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ABSTRACT

Current taint analyses track flow from sources to sinks, and report

the results simply as source→ sink pairs, or flows. This is imprecise

and ineffective in many real-world scenarios; examples include taint

sources that are mutually exclusive, or flows that combine sources

(e.g., IMEI and MAC Address are concatenated, hashed, leaked vs.

IMEI and MAC Address hashed separately and leaked separately).

These shortcomings are particularly acute in the context of Android,

where sensitive identifiers can be combined, processed, and then

leaked, in complicated ways. To address these issues, we introduce

a novel, algebraic-datatype taint analysis that generates rich yet

concise taint signatures involving AND, XOR, hashing ś akin to

algebraic, product and sum, types. We implemented our approach

as a static analysis for Android that derives app leak signatures

ś an algebraic representation of how, and where, hardware/soft-

ware identifiers are manipulated before being exfiltrated to the

network. We perform six empirical studies of algebraic-datatype

taint tracking on 1,000 top apps from Google Play and their em-

bedded libraries, including: discerning between łrawž and hashed

flows which eliminates a source of imprecision in current analyses;

finding apps and libraries that go against Google Play’s guidelines

by (ab)using hardware identifiers; showing that third-party code,

rather than app code, is the predominant source of leaks; exposing

potential de-anonymization practices; and quantifying how apps

have become more privacy-friendly over the past two years.

CCS CONCEPTS

· Security and privacy → Information flow control; Mobile

platform security; Software security engineering; · Software

and its engineering→ Automated static analysis.
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1 INTRODUCTION

Current taint analyses (for Android, this includes FlowDroid [35],

TaintDroid [41], Amandroid [58]) trackwhether data from a privacy-

sensitive source flows to an insecure sink. The analysis result for a

sink (e.g., a leak to the network) is a list of sources (optionally, flows)

that reach that sink. First, this is ineffective: the same leak report can

be too alarmist, or not alarmist enough, depending on the context.

Second, this is inadequate as it does not capture the relationship

between sources, e.g., mutually exclusive sources; neither does it

capture source processing or the severity of the leak, e.g., hashing

can be applied to each source in turn or hashing can be applied to a

concatenation of sources. Finally, rich, convoluted łleak signaturesž

are ubiquitous in Android apps, but cannot be exposed by existing

Android taint trackers. Our approach produces expressive leak

signatures; rather than simply enumerating sources, e.g.,

𝐼𝑀𝐸𝐼,𝑀𝐴𝐶 𝐴𝑑𝑑𝑟𝑒𝑠𝑠, 𝐴𝑛𝑑𝑟𝑜𝑖𝑑𝐼𝐷

as in current taint trackers, our approach uses formulas indicating

relations between, and operations on, sources, e.g.,

𝐼𝑀𝐸𝐼 ⊕ (ℎ𝑎𝑠ℎ(𝐴𝑛𝑑𝑟𝑜𝑖𝑑𝐼𝐷) ∧ ℎ𝑎𝑠ℎ(𝑀𝐴𝐶 𝐴𝑑𝑟𝑒𝑠𝑠𝑠))

Consider for instance the com.appseemobile analytics library, which

leaks the hashed phone identifier IMEI onto the network vs. the

io.fabric library which leaks the raw IMEI onto the network. While a

conventional taint analysis would consider these leaks as equivalent,

they are not: the raw IMEI leak is dangerous, as it allows the server

to identify the manufacturer and phone model; the hashed leak is

less dangerous since the phone information cannot be identified

(at least not directly). Our analysis distinguishes these two flows,

encoding the former as 𝑒 ,1 and the latter as ℎ(𝑒), capturing the

difference. In fact, our study on top Android apps shows that 23%

of identifier leaks are hashed leaks, not raw leaks.

As another example, consider the Likes + Followers Instagram app

that leaks the hashed IMEI and AndroidID (signature: ℎ(𝑒) ∧ ℎ(𝑎)),

which is different from app JCPenney that leaks the raw IMEI and

AndroidID (signature: 𝑒 ∧ 𝑎), which is different from app AARP Now

that leaks either the IMEI or the AndroidID, but not both (signature:

𝑒⊕𝑎); and finally appMoon Calendarwith signatureℎ(𝑒∧𝑎), note the

crucial difference fromℎ(𝑒)∧ℎ(𝑎), especially relevant in the context

of homomorphic encryption. Current flow analyses would conflate

all these cases declaring łIMEI and AndroidID are leakedž. Our

study (Section 6.2) quantifies this conflation on 1,000 top Google

1For conciseness, we use shorthands for Android unique identifiers: 𝑒 for the IMEI, 𝑎
for the AndroidID, 𝑔 for GUID, etc; Section 3.1 defines the full list.
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Play apps: a conventional analysis would conflate 100 apps, whose

signature is ℎ(𝑎) ∧𝑔, with 70 apps whose signature is 𝑎 ∧𝑔, simply

declaring that all 170 apps leak the AndroidID and the GUID.

Our taint analysis produces a leak signature that corresponds

to an algebraic, finite (non-recursive) datatype: our logical AND

(‘∧’) and XOR (‘⊕’) connectives encode product and sum types,

respectively. This algebraic-datatype encoding allows us to define

subsumption ś what it means for an app to leak less than another

app ś rigorously, via subset semantics.

In Android apps, leak patterns such as: łleak [a hardware ID] if

available, otherwise, leak [a software ID]ž abound; we capture this

via XOR. Consider the CBS News app which leaks either the IMEI, or

the AndroidID, but not both. Traditional analyses would report this

app’s signature as 𝑒 ∧ 𝑎, i.e., both identifiers are leaked, which is

imprecise. Our analysis constructs the precise signature 𝑒 ⊕𝑎. More

generally, using our approach, developers can check properties such

as: łthe app only leaks the IMEI on a real device, otherwise it leaks

the AndroidIDž. Precisely capturing taint as logically-connected

raw or hashed identifiers is crucial: our study shows that two-thirds

of leaks are due to leaking identifier combinations (65% of flows

leak combinations of IDs, and only 35% of flows leak individual

IDs). Our algebraic representation is defined in Section 3.

Section 4 presents the design of our static analysis. We use a

novel dataflow-centric call graph to produce an over-approximation

of app flows, followed by two refinement phases ś separating raw

leaks from hashed leaks, and app’s own flows from third-party flows

ś finally yielding an algebraic leak representation aka signature.

While we focus on hardware identifiers in this work, our imple-

mentation is generic ś other privacy-sensitive sources, e.g., GPS

location, can be tracked by simply indicating the relevant source

methods in our source definition file.

In Section 5 we evaluate our approach. The main dataset con-

sisted of 1,000 top apps fromGoogle Play, chosen from 19 categories,

and the 821 libraries these apps embed. We found that the approach

is effective. First, when compared to the state-of-the-art FlowDroid

static analyzer, our approach discovers 2.1x as many leaks, while

shedding light on the nature and location of the leak. Second, when

compared with ground truth, our approach attains 72.6% preci-

sion and 100% recall. The approach is also efficient, with a median

analysis time per app of 347 seconds.

In Section 6, we conduct a series of empirical studies to examine

(a) the landscape and evolution of the 1,000 top Google Play apps

in terms of privacy leaks involving non-resettable łhardwarež and

resettable łsoftwarež IDs, and (b) their embedded libraries, with a

focus on top-20 libraries (financial, advertising, analytics).

An analysis of worst-case leaks, i.e., hardware identifiers sent

raw, has found that 57% of the apps leak at least one of the raw

hardware IDs (IMEI, IMSI, Serial#, MAC Address), which is at odds

with Google’s ID usage guidelines. In fact, 7 out of the top-10 most

common signatures involve hardware IDs.

We found that out of top-25 leakiest apps, 13 apps leak hardware

IDs with no financial justification; among top-20 leakiest libraries,

only 3 are financial (where Google guidelines permit hardware IDs).

Certain identifiers, e.g., IMEI, tend to be leaked by libraries,

whereas others, e.g., MAC Address, by own code. Overall, 59% of

leaks are due to third-party libraries and 41% leaks are due to apps’

own code. This has important implications because leaks due to

third-party code can get an app removed from Google Play, even

though the developer (app’s own code) has followed the guidelines.

Finally, by comparing apps’ versions from 2018 with their 2020

counterparts we found a decrease in the use of raw/hardware iden-

tifiers, indicating that apps have become more privacy-friendly.

Our work makes several contributions:

• A novel, algebraic-datatype taint representation, enabling

expressive yet concise leak signatures and leak analysis.

• An implementation of algebraic taint tracking as a static

analysis for Android.

• A six-part empirical study, characterizing identifier (ab)use

in top Android apps and libraries. The study demonstrates

the flexibility and precision of our algebraic representation.

Our implementation, along with the signatures found for the

apps used in the evaluation, are available as open source.2

2 MOTIVATION AND DESIGN CHOICES

Taint analyses determine whether data from a privacy-sensitive

source (e.g., MAC Address) flows to an insecure sink (e.g., Internet).

Current analyses’ imprecision affects their usability. For example,

applying a standard Android taint analysis produces the same result

(IMEI→Internet), in three different scenarios:

(1) the app exfiltrates the IMEI to a third-party server (e.g., Blink

Health RX [10]); this practice is discouraged or forbidden by

Google Play guidelines, depending on the nature of the app.

(2) the app (e.g., CareZone [1]) links with a financial library that

uses the IMEI for payment fraud prevention; this is allowed

by the guidelines.

(3) the app (e.g., Spectrum TV [29]) concatenates the IMEI with

another identifier, e.g., AndroidID, hashes the result, and

uses this hash value for customer identification. Since the

actual IMEI cannot be reverse-engineered, the privacy loss

is lower compared to the first and second scenarios.

Conflating these three use cases is problematic, as they are very

different in terms of guidelines compliance and privacy implications.

We combine a precise static analysis with an algebraic representa-

tion that can distinguish between these, and other, scenarios.

Android identifiers. Our analysis considers the seven popular

Android IDs described in Table 1. The first four are łhardwarež

identifiers, i.e., tied to the specific phone hardware, and cannot

be reset/changed in software; the remaining three are resettable

identifiers. Google/Android developer guidelines have specific poli-

cies designed to protect user privacy [8] by discouraging, or even

forbidding, access to hardware identifiers, such as:

• łAvoid using hardware identifiersž

• łOnly use an Advertising ID for user profiling or adsž

• łUse an Instance ID or GUID whenever possible for all other

use cases, except for payment fraud prevention and telephonyž

• łBy its nature, fraud prevention requires proprietary signalsž

To sum up, the only acceptable use of hardware identifiers is

financial/fraud detection; all other scenarios, e.g., advertising or

analytics, require the use of resettable identifiers. Many apps violate

these guidelines; to counter this abuse, as shown in Table 1’s łMAC

2https://github.com/sujon335/AlgebraicDatatypeTaintTracker
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Figure 1: Overview.

Table 1: Identifiers considered and their semantics.

ID Semantics

H
a
rd
w
a
re

IMEI/MEID 15-digit; identifies mobile phone

IMSI 15-digit; identifies SIM/network subscriber

MAC 48-bit; identifies the network card

Address -actual value reported by Android <6

-ł02:00:00:00:00:00ž reported by Android 6−9

-randomized value reported by Android ≥10

Serial# Manufacturer-assigned; identifies device

R
e
se
tt
a
b
le AndroidID Android ≥8: unique for an app or app group

Android <8: unique user&device combination

GUID identifies app instance

AdvertisingID identifies user for ad tracking purposes

Addressž line, the Android platform’s recent versions took increas-

ingly stringent measures, first reporting a constant MAC Address,

and then a randomized one. Android version 10 (used by 8.2% of

Android devices as of February 25th, 2021, per Android Studio)

restricts access to hardware identifiers to privileged (e.g., system,

vendor) apps; this does not affect the generality of our approach.

3 ALGEBRAIC-DATATYPE
REPRESENTATION FOR SIGNATURES

In type theory, a product type is the type of an n-ary tuple, e.g.,

in OCaml the tuple (1,3.14,"foo") has type int * float * string. A sum

type is the type of a union, e.g., in C, union u {int i; float f;} or the

OCaml [49] variant type number = Int of int | Float of float have

product type int ⊕ float (either an int or a float, but not both, inhabit

the variant). Our core insight is an algebraic-datatype definition

of taint: identifiers are base types and leak signatures are finite

(non-recursive) algebraic types over base types.

3.1 Definitions

We define these shorthands for the Android identifiers: 𝑒 for the

IMEI, 𝑠 for the IMSI, 𝑎 for the AndroidID, 𝑟 for Serial,𝑚 for MAC

Address, 𝑣 for AdvertisingID, 𝑔 for GUID.

Signatures can be identifiers; hashes; or combinations thereof

introduced via AND or XOR. We use 𝑆 and 𝑇 as metavariables for

signatures. Hence our signature grammar is defined simply as:

𝐼𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑟 𝑖 ::= 𝑒 | 𝑠 | 𝑎 | 𝑟 | 𝑚 | 𝑣 | 𝑔

𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 𝑆 ::= 𝑖 | ℎ(𝑆) | 𝑆 ⊕ 𝑆 | 𝑆 ∧ 𝑆

AND, denoted 𝑆 ∧𝑇 , indicates that both 𝑆 and 𝑇 (which can be

identifiers or signatures), are used. This corresponds to a product

type in type theory, and Cartesian product in set theory. Note that

we deliberately use ‘∧’ instead of the standard type theory symbol

‘×’ as it is more suggestive in our context.

XOR, denoted 𝑆 ⊕ 𝑇 , indicates that either 𝑆 or 𝑇 is used, but not

both. This corresponds to a sum type in type theory,3 and disjoint

set union in set theory. We use ‘⊕’ instead of the standard ‘+’ from

type theory as it is more suggestive in our context.

Hash. The hash, denoted ℎ(𝑆), indicates that an identifier’s hash

(or the hash of an identifier combination) is leaked, not the actual

łrawž identifier(s); e.g.,ℎ(𝑒) could be computed via hashingmethods

nameUUIDFromBytes(IMEI.getBytes()) or md.digest(IMEI.getBytes () ).

3.2 Properties

Defining formally what it means for a program to leak less than

another program is key. For this purpose we introduce the subsump-

tion relation, ‘<:’, induced by subset semantics. Informally, app 𝐴

leaks less than app 𝐵, aka 𝐵 subsumes 𝐴, if the set of all possible

values leaked by𝐴 is a subset of the set of all possible values leaked

by 𝐵. We now define subsumption for the algebraic representation.

Subsumption (AND). An app whose signature is 𝑆 leaks less than

an app whose signature is 𝑆∧𝑇 ; this is denoted 𝑆 <: 𝑆∧𝑇 . Similarly,

an app whose signature is𝑇 leaks less than an app whose signature

is 𝑆 ∧𝑇 ; this is denoted 𝑇 <: 𝑆 ∧𝑇 .

Subsumption (XOR). An app with signature 𝑆 ⊕ 𝑇 leaks less than

an app whose signature is 𝑆 ∧𝑇 .

Subsumption (hash). An app with signature ℎ(𝑆) leaks less4 than

an app with signature 𝑆 ; this is denoted ℎ(𝑆) <: 𝑆 .

First, note how subsumption introduces a partial order (in certain

cases, a total order) on apps’ leaking properties: its power becomes

apparent in Section 6 when we use it to check whether a signature

subsumes another (i.e., an app leaks more than another app, or more

than a different version of the same app). Second, the algebraic

representation naturally induces equivalence classes: apps with the

same signature will leak the same identifiers (and semantically, the

identifiers are manipulated in the same way, e.g., hashed).

3Technically, in the Curry-Howard isomorphism [45], sum types correspond to OR
in logic, not to XOR. However OR is not our intended semantics, since 𝑎 = 𝑇𝑅𝑈𝐸
in 𝑎 ∨ 𝑏 = 𝑇𝑅𝑈𝐸 does not force 𝑏 to be 𝐹𝐴𝐿𝑆𝐸 whereas in our semantics it does
(mutual exclusion); a longer explanation is available here [52]. Our semantics is readily
apparent in the Church Boolean [39] function XOR, i.e., 𝜆𝑎.𝜆𝑏.𝑎 (𝑛𝑜𝑡 𝑏) 𝑏, where if
𝑎 reduces to TRUE, (𝑛𝑜𝑡 𝑏) must reduce to FALSE for the XOR to reduce to TRUE.
4łLeaks lessž in a privacy/cryptographic sense, rather than strictly ℎ (𝑆) ⊆ 𝑆 .
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1 String getTelephonyDeviceId(Context context ) {
2 String deviceIMEI = (( TelephonyManager)

context.getSystemService("phone")) . getDeviceId () ;
3 return deviceIMEI; }
4 String getAndroidId(Context context ) {
5 String androidId = Secure . getString ( context .getContentResolver () ,

"android_id" ) ;
6 return androidId ; }
7 String getWifiMacAddress(Context context) {...
8 String mac=wifiManager.getConnectionInfo().getMacAddress();
9 return mac; }
10 String getUniqueDeviceID(Context context) {
11 return generateDeviceId(getTelephonyDeviceId(context ) ,

getWifiMacAddress(context), getAndroidId(context ) ) ;
12 }
13 String generateDeviceId( String str , String str2 , String str3 ) {
14 if (! TextUtils . isEmpty(str ) ) { // str3 → {a}
15 str3=str ; // str3 → {e}
16 }
17 else if (! TextUtils . isEmpty(str2 ) && ! TextUtils . isEmpty(str3 ) ) { //

str3 → {a}
18 str3 = new UUID((long) str3 .hashCode(), (long)

str2 .hashCode()). toString () ; // str3 → {h(m) ∧ h(a)}
19 } else if ( TextUtils . isEmpty(str3 ) ) { // str3 → {a}
20 str3=UUID.randomUUID().toString();// str3 → {g}
21 }
22 return str3 ; // str3 → {e ⊕ a ⊕ h(m) ∧ h(a) ⊕ g }
23 void SendDeviceinfo() {...
24 httpParaMap.put("deviceID" , getUniqueDeviceID(context) . toString () ) ;
25 ...}

Figure 2: UUID generation in the Audiobooks.com app.

4 APPROACH

The architecture of our system is shown in Figure 1. Given an An-

droid app (APK file), we perform a chain of analyses to construct

the app’s leak signature: control- and data-flow analyses that com-

pute and propagate algebraic taint; a secondary analysis to detect

hashing; and a third-party vs. own analysis. The initial control-flow

graph is produced by the Amandroid static analyzer [58] (shown

in gray; not a contribution of this work).

Our approach operates from generic sources/sinks: any variable

or API method can be used as source; similarly for sinks. These are

specified in a source input file and sink input file, respectively, as is

common for flow trackers.

4.1 Motivating Example

We illustrate our approach, and contrast it with prior taint analyses,

on the Audiobooks.com [7] app. The relevant source code is shown

in Figure 2. The app attempts to leak an unique device ID, aka UUID

onto the network via SendDeviceInfo() (lines 23ś25). The UUID is: the

IMEI, if available (retrieved on lines 1ś3); if not available, the hashes

of MAC Address and AndroidID if they are available (lines 4ś12);

otherwise the GUID, if available (line 20); finally, if none of these

conditions are met, AndroidID is the UUID.

Traditional taint analyzers, e.g., FlowDroid or Amandroid, per-

form taint analysis of each source separately and report the leaks

separately. For the aforementioned code snippet, such tools per-

form four tainted paths calculations for four different sources (IMEI,

MACAddress, AndroidID, and GUID), as illustrated in Figure 3 (top).

Eventually they produce a report stating that all four identifiers

are leaked. This, however, is imprecise for two reasons. First, the

identifiers’ hashed values are leaked, which is less dangerous than

raw leaks. Second, the tools fail to report the aggregation: actually

MAC address and AndroidID are used together, exclusive of IMEI

and GUID ś i.e., a signature, whereas the tools report separate leaks.

In contrast, our analysis produces the correct signature. The

high-level view is shown in Figure 3 (bottom); lower-level dataflow

analysis will be discussed shortly. Instead of simple taint propa-

gation, we propagate algebraic taint. For the example shown in

the figure, instead of four different leaks, we report one precise

signature, the leak actually present here, that is:

𝑒 ⊕ (ℎ(𝑚) ∧ ℎ(𝑎)) ⊕ 𝑔 ⊕ 𝑎

4.2 Dataflow-Centric Call Graph Construction
and Analysis

While other static taint analyzers [35, 58] perform interprocedural

control- and data-flow analyses (as we do), their taint facts and

propagation are both imprecise and insufficient for our purposes.

We address this via a series of analyses, the first of which is call

graph extraction, as explained next.

4.2.1 Call Graph Extraction. We start our analysis from the

Amandroid-generated control-flow graph, and soundly5 extract

the sub-graph where the algebraic taint-relevant data propagates.

We illustrate our approach in Figure 4: the top shows the source

code while the bottom shows our dataflow-centric call graph (the

grey edges/vertices depict the parts of the control flow graph that

can be soundly abstracted away). In the source code, the IMEI

is obtained via the Android API on lines 6 and 7, and stored in

hardwareDeviceId. On line 8, the IMEI flows into the putUUID() method

as a parameter; the IMEI is saved into a JSONObject on line 11. Our

graph captures this dataflow. We can see a dataflow edge between

the hardwareDeviceID and jsonObject variables where the IMEI data is

saved as key-value JSON data. Next, if we follow the dataflow of the

jsonObject currently holding the IMEI data, the data is saved into a

new variable uuid on line 14 in the getPersistentUUID() method. This is

captured by the edge between jsonObject and uuid. Finally, on line 21,

the hashMap creates an entry (key-value pair) with deviceID as key

and IMEI as value, resulting in an edge from uuid to hashMap in the

graph. Next, our dataflow analysis (forward/may ś a variant of

reaching definitions [34]) propagates algebraic taint on top of the

graph.

4.2.2 Dataflow Analysis. We illustrate our dataflow analy-

sis on the program in Figure 2, method generateDeviceID. A

simplified-for-legibility version of the 𝑂𝑢𝑡 (𝑠) sets limited to vari-

able str3 are shown as comments on the right side of the code. At

the beginning the set contains the value {a}, i.e., AndroidID. At

line 15, str3 is assigned a new value which contains the IMEI, {e}.

The 𝑂𝑢𝑡 (𝑠) set for the statement at line 18 contains the combined

hash value signature, (h(m)∧ h(a)); str3 is then assigned {g}, GUID,

at line 20. For each statement, the union of the 𝑂𝑢𝑡 (𝑠 ′) of all the

predecessors 𝑠 ′ of 𝑠 gives the 𝐼𝑛(𝑠) value [34, 47]. In our example,

line 22’s predecessor set is lines {14,15,18,20} (of course, in the ac-

tual analysis, conditional statements are more fine-grained hence

5Technically soundy [50] ś our approach is sound up to native code (because we
leverage Amandroid, which is sound up to native code) which is par for the course for
Java/Android analyses.
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Figure 3: Prior taint approaches (top) vs. our approach (bottom).

1 public class PersistentUUID {
2 JSONObject jsonObject = new JSONObject();
3 private static final String UUID_KEY = "nr_uuid";
4 ...
5 private void generateUniqueID(Context context) {...
6 TelephonyManager tm = (TelephonyManager)

context.getSystemService("phone");
7 hardwareDeviceId = tm.getDeviceId () ;
8 putUUID(hardwareDeviceId) ;...
9 }
10 protected void putUUID(String uuid) {...
11 jsonObject .put(UUID_KEY, uuid); ...
12 }
13 public String getPersistentUUID() {...
14 uuid = jsonObject . getString (UUID_KEY);...
15 return uuid;
16 }
17 }
18 public class AndroidAgentImpl {
19 public void sendDeviceInformation() {...
20 hashMap.put("Model",Build.MODEL);
21 hashMap.put("deviceID",persistentUUID.getPersistentUUID() ) ;...

tm

(generateUniqueID)

IMEI API

….

Dataflow-centric Call Graph

hardwareDeviceID

(generateUniqueID)

jsonObject

(putUUID)

uuid

(getPersistentUUID)

hashMap

(sendDeviceInformation)
….

Figure 4: Source code and its dataflow-centric call graph.

we typically performs two-way joins rather than a four-way join).

Hence at program joint point (line 22), the In set, in this case iden-

tical to the Out set, which represents the UUID signature, is:

𝑒 ⊕ (ℎ(𝑚) ∧ ℎ(𝑎)) ⊕ 𝑔 ⊕ 𝑎

A key factor that informed our analysis design, and helps keep

the analysis precise, was our observation (drawn from manual

taint analysis, Section 5.1.2) that apps’ code for constructing the

signature, such as the code discussed above, tends to lack back

edges, which helps contain dataflow sets size.

4.3 Hash Analysis

As illustrated in Figure 1, hashed leaks are leaks that flow through

hashing methods, e.g., MD5. We detect such flows by setting up

another flow analysis as follows. First, we set the entry of hash

methods as sinks. Next, we set the return of hash methods as sources

and network API methods as sinks. As a result, we separate the un-

derlying identifiers leaks into raw leaks and hashed leaks. Note that

our analysis takes a łHashingMethodsž list as input; we constructed

this list based on an exhaustive analysis of hashing functions/prac-

tices available in Java and practices used by manually-analyzed

Android apps. For example, some common hashing Java API meth-

ods include MD5, SHA and nameUUIDFromBytes(), or Java classes such

as MessageDigest. This list is user-configurable hence easily extended.

4.4 Third-Party vs. Own Code Analysis

To separate own leaks from third-party leaks we used a predefined

list of common third-party libraries as reference,6 along with flow

partitioning. Specifically, if an identifier’s entire flow involves only

third-party library methods, we tag that leak as third-party leak;

otherwise we tag it as own code leak. We have not found any cross-

flow between third-party code and own code in our examined apps.

4.5 Example

In Figure 5, we show an example that illustrates both hashing

and third-party vs. own analysis, from app CGTN. The IMEI is be-

ing hashed by the cryptographic hashing method MessageDigest(SHA)

(lines 4, 7 and 8). The leak happens inside the app’s own package,

so we categorize it as ‘own’. The leak signature is, therefore :

ℎ(𝑒) [own]

6The same library can appear under different names in different apps due to obfus-
cation; we mapped obfuscated libraries’ names to a unique name, common across all
apps, for that library.
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1 public static String getDeviceId (Context me) {
2 TelephonyManager telephonyManager = (TelephonyManager)

me.getSystemService("phone");
3 String IMEI = telephonyManager.getDeviceId() ;
4 MessageDigest md = MessageDigest.getInstance("SHA");
5 byte[] dat = null ;
6 if (IMEI == null ) return " " ;
7 md.update(IMEI.getBytes() ) ;
8 return hashByte2String(md.digest () ) ;
9 }

Figure 5: Cryptographic hashing in

5 EVALUATION

We evaluated our approach, and performed six studies, on 1,000 top

apps from Google Play. The 1,000 apps span 19 popular categories

from Google Play. The distribution ś number of apps per category

ś is shown in Table 2. The number of apps varied slightly across

categories as we favored popular apps. For the evolution study only

(Section 6.6), we compared apps’ year 2018 versions with their year

2020 counterparts, i.e., 2,000 APKs.

5.1 Effectiveness

Wefirst evaluate the effectiveness of our approach by comparing, on

the 1,000 apps, with state-of-the-art FlowDroid; next, we compare

with ground truth on 64 apps where flows were tracked manually.

5.1.1 Comparison with FlowDroid. We ran the July 2020 version

of FlowDroid from its official GitHub page [2] on our 1,000-app

dataset. We configured FlowDroid to match our configuration: we

enabled implicit flow analysis and context sensitivity. Dataflow

analysis, callback collection during call graph construction, and

result collection time limits were set to 1000 seconds, 1000 seconds,

and 500 seconds respectively. As a point of reference, our analysis’

median time per appwas 347 seconds (Section 5.2), so we believe the

aforementioned time limits are reasonable. We directed FlowDroid

to use sources and sinks that match ours. As sources, we used

the API methods responsible for retrieving the 7 identifiers we

track (Table 1). For sinks, we used the SuSi list [3], i.e., all possible

sinks under NETWORK_INFORMATION category, as we are only

interested in exfiltration to the network. Note that the API methods

that read the ‘Serial’ and ‘AdvertisingID’ cannot be expressed in

FlowDroid’s taint source format, so we marked those as ‘n/s’.

We show the results in Table 3: the number of apps where leaks

were found, by FlowDroid and our approach, respectively. We make

three observations. First, FlowDroid misses a substantial number of

leaks, as it reports 46% of the leaks we report, 1083 vs. 2335 (for those

five IDs we could run FlowDroid on); prior work suggests that false

negatives’ root causes in FlowDroid/SuSi include inter-component

communication (ICC) and imprecise sink/source lists [56]. Our

approach handles ICC by default (via Amandroid). Even with the

generous time limits we set, FlowDroid timed out and could not find

all the leaks. Second, FlowDroid cannot distinguish between raw

and hashed leaks, as our approach does (third and fourth rows show

the raw/hashed split). Third, our approach has some false negatives

compared to FlowDroid (i.e., we miss leaks that FlowDroid does

not miss), as depicted in the last row. We found that false negatives

originate in the CFG provided by Amandroid ś when Amandroid

missed some control-flow edges, our approach missed those edges

as well.

5.1.2 Comparison with Ground Truth. We measured the False Pos-

itives (FP) and False Negatives (FN) by comparing the results of

our static analysis with ground truth ś known flows found in prior

work via a manual analysis on 64 apps;7 these łground truth flowsž

are not a contribution of this work. The confusion matrix is:

True Positives: 186 False Positives: 70

False Negatives: 0 True Negatives: 512

These figures, a 72% precision and 100% recall, are par for the course

for a static analysis, indicating that our approach is effective.

We also show a comparison of our approach with FlowDroid on

these 64 ground truth apps in Table 4. Our approach found more

leaks than FlowDroid on these apps as well.

5.2 Efficiency

We conducted the experiments on a MacBook Pro (3.5 GHz dual-

core Intel Core i7 with 16GB RAM), running Mac OS X 10.14.6. We

show statistics (computed across the entire app dataset) of analysis

running time, along with app bytecode size, in Table 5. A typical app

took about 6 minutes to analyze ś median 347 seconds, geometric

mean 411 seconds ś which is efficient for a static analysis; the

longest analysis timewas 13 hours, whichwe believe can be reduced

substantially with more engineering. The app bytecode statistics ś

median 16.6MB, geometric mean 15MB, maximum 103MB ś show

that our approach is capable of analyzing large apps.

6 APPLICATIONS

We now present six studies that provide evidence for the expres-

siveness and effectiveness of algebraic-datatype taint tracking.

6.1 What IDs Are Leaked, and in What Form?

We first studied the frequency and nature of identifier leaks. In

Table 6 we show the percentage of apps that leak that identifier,

and the form of the leak. Three critical identifiers, IMEI/Serial/MAC

Address, are leaked by 40ś51% of the apps, which is the first reason

for concern. The second reason for concern is that identifiers are

leaked raw by 75ś88% of the apps that leak them; 23ś46% of apps

leak these IDs hashed ś in lieu of, or in addition to, the raw leak.

On a more positive note, the IMSI is leaked to a lesser extent, only

21% of the apps, and mostly hashed (74%).

For the remaining three, resettable identifiers, we found that

the AndroidID and GUID are leaked routinely: by 91% and 92% of

the apps, respectively. The Advertising ID is seeing a reduced leak

rate (58% of the apps). Raw leaks are the norm for these identifiers:

96ś100% of the leaks are in raw form.

We observed that certain apps leak both the raw and hashed ID

(last row of Table 6). Note that for IMEI, IMSI, Serial, and AndroidID,

this figure is quite high, 12ś37% of the apps. We believe this practice

to be particularly pernicious, because such apps essentially have

the ℎ(𝐼𝐷) → 𝐼𝐷 mapping. If these apps communicate the mapping

7The manual flow analysis was exhaustive, e.g., went so far as capturing and rewriting
network packets.
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Table 2: App distribution across categories.
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#Apps 52 60 55 55 42 60 54 53 53 54 55 53 50 49 50 47 58 54 54

Table 3: The number of top Google Play apps where Flow-

Droid, and our approach respectively, found leaks.
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ID
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ID

FlowDroid 104 23 n/s 101 336 n/s 519

Our Approach

Total 405 108 316 372 722 455 728

Raw 334 43 235 324 695 455 728

Hashed 145 79 142 83 297 0 0

False Negatives 3 0 n/a 7 0 n/a 11

Table 4: The number of ground truth apps where FlowDroid,

and our approach respectively, found leaks.
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FlowDroid 11 9 n/s 5 24 n/s 53

Our Approach 21 9 18 15 44 32 56

Table 5: Efficiency results.

Analysis time (seconds) Bytecode size (MB)

min max median mean min max median mean

140 47,651 347 411 0.04 103.4 16.6 15

Table 6: Identifiers stats.
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ID
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ID

Apps (%) 51 21 40 47 91 58 92

Raw (%) 83 38 75 88 96 100 100

Hashed (%) 37 74 46 23 41 0 0

Raw & Hashed (%) 20 12 21 11 37 0 0

to other apps that only have ℎ(𝐼𝐷), then the raw ID value, unique

to the device, can be de-anonymized.

6.2 Multiple-Identifier Leaks

We now study cases where multiple identifiers are leaked by a

single app. We present the most frequent signatures in Table 7.

On a positive note, 3 out of top-10 most common signatures are

ℎ(𝑎) ∧𝑔, 𝑎 ∧𝑔, and 𝑎 ∧ 𝑣 , that is, resettable identifiers (10%, 7%, and

Table 7: Most common multi-ID leaks; R=raw, H=hashed.

IM
E
I

IM
S
I

S
e
ri
a
l

M
A
C

A
n
d
.I
D

A
D
v
ID
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#
A
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R H R H R H R H R H R R

✓ ✓ 100

✓ ✓ 70

✓ ✓ ✓ ✓ 55

✓ ✓ 41

✓ ✓ 40

✓ ✓ 33

✓ ✓ 31

✓ ✓ 28

✓ ✓ 27

✓ ✓ ✓ 26

✓ ✓ ✓ ✓ ✓ 24

✓ ✓ ✓ 24

✓ ✓ ✓ 17

✓ ✓ ✓ 14

✓ ✓ ✓ 13

✓ ✓ 13

✓ ✓ 11

✓ ✓ 11

✓ ✓ 10

3.1%, respectively). The flip side is that the other 7 out of top-10 use

hardware identifiers: we have ℎ(𝑒) ∧ℎ(𝑟 ) ∧ℎ(𝑎), then ℎ(𝑚) ∧ℎ(𝑎),

then 𝑒 ∧ 𝑎, at 4% and above. We have ℎ(𝑟 ) ∧ ℎ(𝑎), then ℎ(𝑒) ∧ ℎ(𝑠),

then ℎ(𝑒) ∧ ℎ(𝑚), then ℎ(𝑒) ∧ ℎ(𝑎) ∧ 𝑔, at 2.6% and above.

Note how these findings underline the effectiveness of our ap-

proach. A standard taint analysis would conflate the 100 apps whose

signature is ℎ(𝑎) ∧𝑔 with the 70 apps whose signature is 𝑎 ∧𝑔; and

would conflate the 24 apps using ℎ(𝑒) ∧ ℎ(𝑠) ∧ ℎ(𝑟 ) ∧ ℎ(𝑚) ∧ ℎ(𝑎)

with the 4 apps using 𝑒 ∧ 𝑠 ∧ 𝑟 ∧𝑚 ∧ 𝑎.

Examples: complex yet common signatures. Our prior work on

manual taint analysis (Section 5.1.2) has revealed groups of apps

with common signatures ś apps use the same mechanism for con-

structing a unique łDeviceIDž. Our analysis can group apps into

equivalence classes induced by app signatures; this has a variety

of applications, from finding groups of apps with common behav-

ior [43] to groups of apps with common developers, etc. We show

two such examples in Figure 6. The left side (first stage) of the figure

lists all the identifiers involved in signature construction. The sec-

ond stage shows how those identifiers are combined or processed

to generate a hashed unique DeviceID, which is then exfiltrated.
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String deviceID = new 
UUID( 

imei.toString().hashCode(), 

(imsi.hashCode() | 
androidID.hashCode()))

.toString();

String androidID = 
Secure.getString(...ANDROID_ID)

String imsi = telephonyManager. 
getSubscriberId()

String imei = 
telephonyManager.getDeviceId();

Signature 1: h(e)∧ h(s)∧ h(a)

Identifier Read Identifier Processing
Exfiltration

(to the network)

String deviceID = imei or 
new 

UUID(androidID.hashCode(), 

macAddress.hashCode()).to
String() or androidID or 

macAddress or GUID

String androidID = 
Secure.getString(...ANDROID_ID)

String imei = 
telephonyManager.getDeviceId();

String macAddress = WifiInfo. 
getMacAddress();

Signature 2: e⊕ (h(a)∧ h(m))⊕ a⊕ m⊕ g

String GUID = 
UUID.randomUUID().toString();

Figure 6: DeviceID signatures.

Table 8: Third-party vs. Own code statistics: number and per-

centage of leaks (T=third-party, O=own code).

IMEI IMSI Serial MAC And.ID

T O T O T O T O T O

R 183 208 28 16 128 120 223 145 586 418

H 97 63 56 25 120 33 61 23 198 144

R(%) 33 38 22 13 32 30 49 32 44 30

H(%) 18 11 45 20 30 8 14 5 15 11

Signature 1 (app: Texas Roadhouse Mobile [30]) creates a DeviceID

from the combination of IMEI, IMSI, and AndroidID. Since all iden-

tifiers are used, the signature uses ANDs:

ℎ(𝑒) ∧ ℎ(𝑠) ∧ ℎ(𝑎)

Signature 2 (library io.intercom) is quite complex, as the DeviceID

is exactly one of: either the IMEI, or the AndroidID, or the MAC

Address, or the GUID, or the AND of hashed Android ID and hashed

MAC Address. Our representation captures this effectively:

𝑒 ⊕ (ℎ(𝑎) ∧ ℎ(𝑚)) ⊕ 𝑎 ⊕𝑚 ⊕ 𝑔

6.3 Library Leaks vs. App’s Own Leaks

We motivate this analysis via two scenarios. In the first scenario, a

developer submits an app for publishing onto Google Play, and the

app is rejected for violating guidelines, e.g., a raw hardware leak in

a non-financial app. Even though the developer has used no IDs, the

app is linked with a łleakyž advertising library that causes the ID

leak. The developer should be able to extract the library’s signature

and the app’s signature to determine the leak’s cause and course of

action. In the second scenario, the Google Play marketplace itself

tries to determine whether a raw hardware leak is allowable or

not, prior to publishing an app. If the app uses a payments services

library, the leak would be allowed in the name of fraud prevention.

Hence it is essential to find whether a leak is caused by a library or

1 // JCPenney app
2 static String g(Context context ) {...
3 hashMap.put("di" ,( telephonyManager.getDeviceId()) . digest () ) ;
4 ...
5 jSONObject.put("di" , hashMap.get("di" ) ) ;...
6 }
7
8 // Dunkin app
9 final HttpParameterMap getRiskBodyParameterMap(){...
10 httpParameterMap.add("imei", (TelephonyManager)

context.getSystemService("phone")) . getDeviceId () , true ) ;...
11 return httpParameterMap;
12 }

Figure 7: Hashed leak (top) vs. raw leak (bottom) in the same,

com.threatmetrix library.

the app itself. Our analysis isolates the source of the leak (Figure 1)

and attributes it to either third-party (library) code or own code.

In Table 8 we present the results of leak attribution in our ex-

amined apps. For each ID, we show the number of third-party (T)

vs. own (O) leaks, whether the leak is raw or hashed, as well as the

percentage distribution. All the hardware identifiers ś IMEI, IMSI,

Serial, and MAC Address ś as well as the AndroidID, are leaked

more by libraries than own code (51%, 67%, 62%, 63%, 59%, respec-

tively). For identifiers AdvertisingID and GUID (omitted from the

table for space), leaks were substantial but balanced: 297 third-party

vs. 291 own for AdvertisingID and 639 vs. 631 for GUID.

This finding ś hardware ID leaks are attributable more to third-

party code than own code ś is important, because it shows that

apps could unwittingly be the source of problematic leaks, e.g., due

to łleakyž libraries, and could be unfairly blamed for leaks that

apps’ own developers did not introduce, or were not even aware of.

6.4 Leakiest Libraries

As mentioned previously, libraries are a significant source of leaks.

Summarizing leaks in libraries is non-trivial, however, because

of context-sensitivity: a leak would materialize (or not) depending

on how an app invokes the library. We illustrate this in Figure 7,

on library com.threatmetrix. When the library is invoked from the

JCPenney app (top), the IMEI is leaked hashed: on line 3 the IMEI

is read and its hash (digest) added to hashMap. However, when the

library is invoked from the Dunkin app (bottom), the IMEI is leaked

raw: on line 10 the IMEI is read and added, raw, to httpParameterMap.

Therefore, in Table 9 we present the results of our library anal-

ysis; of the 821 libraries used in our apps, we show the top-20

łleakiestž; for each library and each ID, we show the number of

library methods that leak the raw ID and the number of library

methods that leak the hashed ID. For example, library com.paypal

has 35 methods that leak the hashed IMEI, 8 methods that leak the

raw IMEI, 35 methods that leak the hashed IMSI, etc.

For each library, we also present the library’s purpose, as indi-

cated on the library’s website or GitHub page. Note that only three

libraries are financial: com.paypal, com.tune, com.adjust; hardware ID

leaks are expected, and allowed, in these libraries. However, the

analysis shows that most leaks are in non-financial libraries, the

overwhelming majority of which are advertising and analytics.
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Table 9: Third party libraries: the number of methods leaking each ID, and the form of the leak (H=hashed, R=raw). Raw

hardware leaks in non-financial libraries shown in red.

Library IMEI IMSI Serial MAC AndroidID AdvID GUID Purpose

H R H R H R H R H R R R

com.paypal 35 8 35 4 35 4 35 6 35 4 30 142 finance

io.fabric 0 38 0 0 0 30 0 35 0 543 0 285 analytics

net.hockey.app 0 0 0 0 0 0 0 0 114 69 0 266 analytics

com.apps.flyer 0 2 0 0 0 0 0 2 7 91 95 106 ads

com.kochava 0 3 0 0 0 0 0 3 0 36 34 33 ads

com.threat.metrix 2 24 0 6 3 32 0 0 2 12 0 37 analytics

com.google 0 0 0 0 0 0 0 0 3 22 164 16 ads

io.intercom 0 9 0 0 0 0 0 8 0 9 0 106 analytics

io.branch 0 0 0 0 0 0 0 0 0 65 0 66 analytics

com.appsee 15 0 15 0 0 15 0 0 0 0 0 60 analytics

bo.app 0 0 0 0 0 7 0 0 0 0 0 60 analytics

com.tune 0 0 0 0 0 0 0 0 0 12 0 107 finance

com.segment 0 24 0 0 0 24 0 0 0 24 3 76 analytics

com.adjust 0 0 0 0 0 0 0 55 0 55 0 57 finance

com.leanplum 0 0 0 0 0 0 12 0 1 11 0 11 analytics

com.nielsen 0 0 0 0 0 4 0 1 0 26 6 4 analytics

com.iovation 0 9 0 8 0 0 0 9 0 9 0 7 analytics

com.startapp 0 0 0 0 0 0 0 0 0 32 32 99 ads

com.newrelic 34 0 0 0 34 0 0 0 34 0 0 174 analytics

com.mobvista 0 22 0 0 0 0 0 22 27 22 22 65 analytics

Table 9 paints a grim picture of the Android library landscape

when it comes to privacy: advertising and analytics libraries make

heavy use of hardware IDs, but this use appears aimed at identifying

users and devices rather than preventing fraud. Ironically, finan-

cial libraries com.tune and com.adjust are among the most privacy-

friendly libraries (least intensive users of hardware IDs).

6.5 Leakiest Apps

We examined the łleakiestž apps in light of the Google guidelines

for acceptable use of hardware IDs. We focus on the top-25 apps

that manage to leak all hardware identifiers, raw. Moreover, many of

these apps also leak hashed versions of hardware identifiers; leaking

both raw and hashed versions is a concern for de-anonymization.

We show the results in Table 10. For each app we show the popular-

ity (the floor of the number of installs, as indicated on Google Play

on February 25th, 2021), the app category, and the list of leaks.

We identified those apps that have a legitimate financial reason

to use hardware IDs as follows: apps that are in the Finance category,

or apps that link with a financial library, and the leaks are due to the

library (third-party) code rather than the app code. The apps that

did not meet these conditions, shown in red in the table, potentially

violate ID usage guidelines. Our approach distinguishes between

raw and hashed, and between third-party vs. own leaks, helping

spot potential violations. In contrast, an approach that misses these

nuances might flag a substantial number of benign, policy-abiding

apps as problematic (i.e., a high rate of false positives).

Altogether, our dataset had 190 apps that either use a financial

library, or the app itself is in the Finance category. These apps might

need hardware identifier information for fraud & abuse checking

purposes, so leaks from these apps can be accepted. However, 47

out of these 190 apps leak at least one raw hardware ID via a non-

financial third-party library, which is a concern.

6.6 Longitudinal Study: 2018 vs. 2020

To investigate whether apps are becoming more guidelines-

compliant and privacy-friendly, we conducted a longitudinal study,

comparing the 2018 versions of 1,000-app dataset with their 2020

counterparts.

6.6.1 Identifier-Centric Study. We first investigate how the preva-

lence/use of a certain identifier has changed over two years. We

tabulate the findings in Table 11. For each ID, each code location

(third-party (TP) or own (O)), and each leak type (hashed or raw) we

show the number of apps that added that ID leak with ‘+’ and the

number of apps that removed that ID leak with ‘-’. For example, for

raw IMEI we have: in third-party code, 8 apps have added this leak

and 45 apps have removed this leak, yielding a net change of -37;

whereas in own code, 19 apps have added this leak and 59 apps have

removed this leak, yielding a net change of -40. The results reveal

several trends. First, the use of raw IDs has decreased across the

board: notice the negative net figures for IMEI, Serial, MACAddress,

AndroidID. Two groups saw an increase: AdvertisingID and GUID,8

especially in own code, as well as hashed own code (AndroidID,

Serial, MAC). These results, also corroborated by the app-centric

study in Section 6.6.2, indicate (1) a move away from hardware

8We keep the ‘0’ values for AdvertisingID and GUID in the table for uniformity; since
these IDs were not used in the hashed form to begin with, there was no change.
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Table 10: łLeakiestž apps. Non-financial apps with no financial libraries shown in red; R=raw, H=hashed.

App #Installs Category IMEI IMSI Serial MAC AndrID AdvID GUID

(million) R H R H R H R H R H R R

Spectrum TV [29] 10 Entertainment ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CGTN [13] 5 News & Magazines ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

GPS Navigation System [20] 10 Maps & Navigation ✓ ✓ ✓ ✓ ✓ ✓ ✓

WiFi Map [19] 50 Productivity ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Bitcoin, Crypto News [9] 1 Finance ✓ ✓ ✓ ✓ ✓ ✓ ✓

CheapOair [14] 1 Travel & Local ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Greyhound Lines [21] 1 Travel & Local ✓ ✓ ✓ ✓ ✓ ✓

JCPenney [23] 5 Shopping ✓ ✓ ✓ ✓ ✓ ✓

CBS News [12] 1 News & Magazines ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Wendy’s [31] 5 Food & Drink ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Zipcar [33] 1 Maps & Navigation ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Lyft Rideshare [25] 10 Maps & Navigation ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Western Union [32] 5 Finance ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

NJ TRANSIT [26] 1 Maps & Navigation ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Curb The Taxi App [15] 1 Maps & Navigation ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Apartments.com [4] 5 House & Home ✓ ✓ ✓ ✓ ✓ ✓

CareZone [1] 1 Medical ✓ ✓ ✓ ✓ ✓ ✓ ✓

BURGER KING [11] 10 Food & Drinks ✓ ✓ ✓ ✓ ✓ ✓ ✓

Fox Now [18] 10 Entertainment ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

One Dollar [27] 0.5 Shopping ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Sam’s Club [28] 1 Shopping ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Aaptiv [5] 1 Health & Fitness ✓ ✓ ✓ ✓ ✓ ✓ ✓

Letgo [24] 100 Shopping ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Amber Weather [6] 1 Weather ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Blink Health Rx [10] 0.1 Medical ✓ ✓ ✓ ✓ ✓ ✓

Table 11: Identifier-centric study results: 2018→ 2020 changes in identifier use.

IMEI IMSI Serial MAC AndroidID AdvID GUID

TP O TP O TP O TP O TP O TP O TP O

Raw +8 +19 +1 +8 +14 +23 +8 +10 +41 +44 +24 +44 +47 +52

-45 -59 -8 -2 -28 -25 -48 -28 -75 -52 -48 -23 -45 -27

Net -37 -40 -7 +6 -14 -2 -40 -18 -34 -8 -24 +21 +2 +25

Hashed +12 +8 +5 +5 +15 +10 +5 +5 +33 +26 0 0 0 0

-19 -16 -10 -8 -21 -5 -12 -2 -34 -18 0 0 0 0

Net -7 -8 -5 -3 -6 +5 -7 +3 -1 +8 0 0 0 0

identifiers and toward resettable identifiers, and (2) replacing raw

with hashed values, which is encouraging.

6.6.2 App-Centric Study. The second part of our study is app-

centric. Assuming the signature of an app in 2018 was 𝑆2018 while

in 2020 the signature is 𝑆2020, we check whether 𝑆2020 <: 𝑆2018. We

show how our notion of subsumption allows for flexible definitions,

hence we can gauge, along several dimensions, whether the apps

have become more privacy-friendly.

We show the results in Table 12. We start with AND subsumption,

e.g., 𝑒 ∧ 𝑠 <: 𝑒 ∧ 𝑠 ∧ 𝑟 indicates a reduction in hardware identifiers;

we found that 108 apps exhibit this condition, which is encouraging

as it means dropping the use of one or more hardware identifiers.

When relaxing the subsumption notion to allow for increases in

software IDs, we found a further 11 apps that exhibit this condition,

which is still positive, as the use of software IDs is preferred to the

use of hardware IDs. We also show the number of apps that drop

each ID; IMEI and MAC Address are the most-dropped hardware

identifiers (87 and 71 apps, respectively), while AndroidID was

dropped by 107 apps.

Hash subsumption, e.g., 𝑒 ∧ ℎ(𝐼𝐷) <: 𝑒 ∧ 𝐼𝐷 , indicates that the

app has switched from leaking the raw ID to leaking the hashed ID.

While few apps exhibit this subsumption (26 for hardware IDs, 20

for AndroidID), it is nevertheless a privacy gain.

Reverse subsumption. Finally, 35 apps were in the undesirable

łreverse subsumptionž situation: at least one hardware ID leak was

added in the 2020 version. We show these findings in the last five

rows of Table 12. Of the 35 apps that went from a hashed to a raw
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Table 12: App-centric study results: subsumption kind, in-

formal definition, and # of apps exhibiting subsumption.

Kind Subsumption Definition #Apps

A
N
D

hardware ID leaks decreased 108

hardware ID leaks decreased, software 11

ID leaks increased

raw IMEI leak removed 87

raw MAC Address leak removed 71

raw Serial leak removed 49

raw IMSI leak removed 12

raw AndroidID leak removed 107

H
a
sh

raw hardware ID leak→ hashed hw. ID leak 26

raw IMEI→ hashed IMEI 14

raw IMSI→ hashed IMSI 3

raw MAC Address→ hashed MAC Address 6

raw Serial → hashed Serial 3

raw AndroidID→ hashed AndroidID 20

R
ev

e
rs
e

hashed hardware ID leak→ raw hw. ID leak 35

hashed IMEI→ raw IMEI 20

hashed IMSI→ raw IMSI 3

hashed MAC Address→ raw MAC Address 7

hashed Serial→ raw Serial 5

leak, the majority did so for the IMEI (20 apps), while fewer apps

did so for the IMSI, MAC Address, and Serial, respectively.

To conclude, the longitudinal analysis reveals an overall move

away from usage/leaks of hardware IDs, toward resettable IDs; and

to smaller extent, a move toward hashed hardware IDs.

7 RELATED WORK

Many static flow analyzers for Android have been developed, includ-

ing Amandroid [58], DIALDroid [16], DidFail [17], DroidSafe [42],

FlowDroid [35] and IccTA [22]. A prior study [56] found that a

typical analyzer takes on average 6 minutes per app, on par with

our approach. Most of these tools use the predefined sources and

sinks list from Susi [3], with the binary goal of deciding whether

a source flows to a sink; this renders the results quite imprecise,

limiting tools’ usability.

Other static flow analyzers for Android (whose goal is still de-

ciding whether a source flows to a sink) improve precision over

the aforementioned analyzers, at the expense of running time. For

example, P/Taint [44] is a Datalog-based static information flow

analyzer. Their evaluation, like ours, include popular Android apps

(such as Facebook Messenger or Google Chrome). Thanks to ad-

ditional features such as taint transfer and sanitization, P/Taint

achieves higher precision and recall.

Horndroid [37] focused on improving the precision of existing

static analyses by determining whether a sink will be reached by

tainted flows, and refining branch conditions to avoid false positives.

However, Horndroid does not allow naming sources (as we do with

the seven IDs), so their approach is not directly comparable to ours.

DroidInfer [46] uses a context-sensitive information flow type

system to improve static analysis precision and scalability, and sup-

ports analysis of libraries; their focus is on sensitive data leaks (to

network or logs). Evaluation on top Google Play apps (144) shows

high precision (FP=15%). DroidInfer’s goal is intuitive source→sink

tracking rather than algebraic signatures and ID (ab)use studies.

Myers and Liskov’s label model (Jif/DLM) [54] describes łunionsž

of labels: set union, i.e., AND in our model. Our XORs, not sup-

ported in Jif, would be set disjoint union. While we do not support

label polymorphism as Jif does, polymorphism would only help if

there was cross first-party to third-party flow which we did not find

(Section 4.4). Stefan et al.’s disjunction category labels [57] are de-

fined as conjunctions and disjunctions on principals; łcan-flowž as

logical implication governs safe information flow. They implement

dclabel-static, a prototype information flow control in Haskell,

but no evaluation is provided. Montagu et al. [53] introduced label

algebras ś a set of labels that form a pre-lattice, i.e., with a pre-order

(the term łalgebraicž in our work, from algebraic data types, refers

to the product and sum operations on types). The focus of these

approaches was the formalism/flow model. In contrast, for us, the

algebraic taint representation is a conduit to implementing a static

analysis for Android and conducting six studies on 1,000 top apps.

MAPS [59] distinguishes between first-party and third-party ID

leaks by the call site of sensitive API methods but does not per-

form taint tracking or static analysis ś understandable for the scale

(1,035,853 apps). This is prone to false positives, e.g., ID-retrieving

calls in dead code, or IDs which are read but not used/leaked.

The Taintdroid [41] dynamic taint tracker has exposed that lo-

cation and phone information are routinely leaked to advertising

and content servers. Taintdroid’s focus is on efficiently tracking

taint within an app and the Android OS, whereas we perform static

tracking, and within the confines of the app only. TaintDroid does

not distinguish between raw and hashed leaks.

Dynamic taint analysis [40, 41, 48] has different goals compared

to us: reduce false positives or track which servers packets go to

(which is impossible with our approach). Our static approach aims

to reduce false negatives and allows analysis at scale. Dynamic

analysis, in general, needs to overcome two issues (1) low cover-

age [36, 38, 51, 55], and (2) signing-in successfully ś this is problem-

atic in cases such as the Western Union banking app, which requires

a Western Union customer account (as do other apps in Table 10).

8 CONCLUSIONS

We introduce an algebraic taint representation that solves a key

problem with existing taint analyses: distinguishing between pro-

grams that leak data in ways that are similar on the surface, but

very different underneath. We implemented algebraic taint tracking

as a static analysis for Android, and demonstrate its effectiveness

through six studies on identifier (ab)use in top Android apps and

libraries. We found that being able to capture subtle yet critical dif-

ferences is key for understanding app behavior w.r.t. user privacy or

abiding by developer guidelines. Our longitudinal study shows that

over the past two years, apps have become more privacy-friendly.
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