Self-Hiding Behavior in Android Apps: Detection and
Characterization

Zhiyong Shan
Wichita State University
Wichita, Kansas, USA
zhiyong.shan@wichita.edu

ABSTRACT

Applications (apps) that conceal their activities are fundamentally
deceptive; app marketplaces and end-users should treat such apps
as suspicious. However, due to its nature and intent, activity con-
cealing is not disclosed up-front, which puts users at risk. In this
paper, we focus on characterization and detection of such tech-
niques, e.g., hiding the app or removing traces, which we call “self
hiding behavior” (SHB). SHB has not been studied per se — rather it
has been reported on only as a byproduct of malware investigations.
We address this gap via a study and suite of static analyses targeted
at SH in Android apps. Specifically, we present (1) a detailed char-
acterization of SHB, (2) a suite of static analyses to detect such
behavior, and (3) a set of detectors that employ SHB to distinguish
between benign and malicious apps. We show that SHB ranges from
hiding the app’s presence or activity to covering an app’s traces,
e.g., by blocking phone calls/text messages or removing calls and
messages from logs. Using our static analysis tools on a large dataset
of 9,452 Android apps (benign as well as malicious) we expose the
frequency of 12 such SH behaviors. Our approach is effective: it has
revealed that malicious apps employ 1.5 SHBs per app on average.
Surprisingly, SH behavior is also employed by legitimate (“benign”)
apps, which can affect users negatively in multiple ways. When
using our approach for separating malicious from benign apps,
our approach has high precision and recall (combined F-measure
= 87.19%). Our approach is also efficient, with analysis typically
taking just 37 seconds per app. We believe that our findings and
analysis tool are beneficial to both app marketplaces and end-users.

CCS CONCEPTS

« Security and privacy — Software security engineering; Soft-
ware reverse engineering; « Software and its engineering —
Automated static analysis;

KEYWORDS
Android, static analysis, malware, mobile security

ACM Reference Format:
Zhiyong Shan, Iulian Neamtiu, and Raina Samuel. 2018. Self-Hiding Behavior
in Android Apps: Detection and Characterization. In ICSE ’18: ICSE ’18: 40th

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5638-1/18/05...$15.00
https://doi.org/10.1145/3180155.3180214

Iulian Neamtiu
New Jersey Institute of Technology
Newark, New Jersey, USA
ineamtiu@njit.edu

Raina Samuel
New Jersey Institute of Technology
Newark, New Jersey, USA
res9@njit.edu

International Conference on Software Engineering , May 27-June 3, 2018,
Gothenburg, Sweden. ACM, New York, NY, USA, 12 pages. https://doi.org/
10.1145/3180155.3180214

1 INTRODUCTION

Mobile security research has mostly focused on malware activation,
malicious payloads, permission abuse, or leaking sensitive data.
Little attention has been paid to deceptive mechanisms that are
essential for the success of malware, i.e., how malware manages
to get installed, and continues operating on the phone without the
users noticing anything suspicious. To do so, malware uses a range
of SHB, e.g., hiding the app, hiding app resources, blocking calls,
deleting call records, or blocking and deleting text messages. Sur-
prisingly, extremely popular “benign” apps such as Airbnb, Truecaller,
and Waze also employ certain SH techniques in the name of user
convenience.

We believe that SHB is fundamentally deceptive and that having
tools that perform accurate and early detection of SHB is key. First,
app marketplaces, e.g., Google Play or Apple Store, should be able
to detect SHB, so that SHB can be considered in the decision to
publish an app or not. Even when an app with SHB is published
on the marketplace, users should be forewarned about the SHB so
they can decide whether to install the app on their phone or not.

We address these problems on the Android platform via several
advances: (1) we shine a light on SHB via detailed characterization,
(2) we construct an SHB-detecting tool based on static analysis,!
and (3) we show how our approach for identifying SHB can be very
effective at exposing malicious apps as well as deceptive practices in
benign apps. We chose to focus on Android because Android clearly
dominates the worldwide mobile market, with an 87% market share
in the second quarter of 2017 [8]. While popular, Android’s security
could be improved: researchers from the antivirus firm G Data have
discovered that more than 750,000 new malicious Android apps
have sprung out during 2017’s first quarter, and estimate that the
total number will grow up to a staggering 3.5 million by the end of
2017 [1]. Therefore, there is plenty of evidence that the threat level
for Android users remains high, and there is an impetus to detect
and weed out malware before it is published on Google Play or it
reaches users’ devices.

We start by presenting a detailed characterization of SHB in
Section 2. We group SHB into three main categories: SHB that
involve app objects, i.e., hiding the presence of the app; SHB that
block or remove traces of remote communication, e.g., blocking calls
or deleting text messages; and subverting the system’s reminders,
e.g., hiding notifications or muting the phone.

! The tool and datasets are available at http://spruce.cs.ucr.edu/SelfHiding/

https://doi.org/10.1145/3180155.3180214
https://doi.org/10.1145/3180155.3180214
https://doi.org/10.1145/3180155.3180214
http://spruce.cs.ucr.edu/SelfHiding/

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

In Section 3 we present our approach: a tool, consisting of a suite
of static analyses, that exposes potential SHB in a given Android
app. Our tool works directly on APKs, i.e., the format Android apps
are distributed in, and does not require access to app source code.

In Section 4 we evaluate our approach along several dimensions.
First, we check our approach’s accuracy via manual validation on
a set of 198 malware samples; we found that it attains an 85.71%
F-measure. Second, we check whether our approach can be used to
triage benign from malicious apps: using a dataset of 9,452 benign
and malicious apps, the attained F-measure is 87.19%.

In Section 5 we provide a detailed exposé of SHB in widely-used
apps, and how these deceptive behaviors can affect users.

To summarize, we make the following contributions:

(1) An exposé of of SHBs, including novel SHBs, as employed
by malware and widely-used benign apps.

(2) A static-analysis-based approach for detecting SHB.

(3) An evaluation of our approach on 9,452 sample apps, both
benign and malicious.

2 SELF-HIDING BEHAVIORS

In this section, we provide a comprehensive description of SH
behaviors. We define as SH a behavior meant to hide the app or
its actions from being viewed (or heard!) by the user. Note that we
exclude those behaviors meant to evade security mechanisms, e.g.,
anti-malware tools or access control mechanisms - they have been
studied thoroughly and are outside the scope of this paper.

Our characterization is based on manual analysis of about 200
malicious apps and automated analysis of about 3,000 other mali-
cious apps. We found 12 SHBs; few of these are even mentioned in
the research community, let alone characterized thoroughly, and
some, including “Hide icon” and “Hide activity”, are not mentioned
at all.

Users could employ three main approaches for identifying the
presence of malicious apps: inspecting app objects (icon, app, ac-
tivity), analyzing remote communication (SMS, MMS, and phone
calls) or checking system reminders (system dialogs, sound, system
logs, notifications, recent apps list, etc). There are two main issues
with this approach, though: (1) it requires a highly knowledgeable
user who performs such inspections periodically, and (2) malware
actively attempts to escape (hide itself) from such identification.

To set up the discussion, in Figure 1 we show the number of SHBs
in sample sets of 1,000 malicious and 1,000 benign apps, respectively;
the 1,000 benign apps are a random sample extracted from the 6,233
benign apps, while the 1,000 malicious apps are a random sample
extracted from the 3,219 malicious apps (a more thorough dataset
description is provided in Section 4).

2.1 App Objects

2.1.1 Hide icon. After installation, benign apps add their icon
to the home screen. To hide itself, a malicious app removes the
icon so the user cannot notice the app’s presence. There are two
methods for hiding the icon:

(a) Modifying the app’s manifest file to remove the app from the
default launcher, i.e., home screen. This can be done by deleting

Zhiyong Shan, lulian Neamtiu, and Raina Samuel

category android. intent .category. LAUNCHER from the app’s main activ-
ity section in the manifest file.? For example, malware Fake-skype
camouflages as the popular app Skype and runs in the background
without an icon in the home screen.

(b) Calling an Android API method to disable the icon at runtime.
This can be done by invoking method setComponentEnabledSetting(). For
example, malware Facebook-otp (full package name: jgywwv.jvyjsd.
sordvd), masquerades as the Facebook app but disables its icon im-
mediately after installation. We show the segment of the code we
reverse-engineered from this malware:

1 PackageManager pm = getPackageManager();

2 ComponentName cn = new ComponentName("jgywwv.jvyjsd.sordvd", "
jgywwv.jvyjsd.sordvd.Activity 1");

3 pm.setComponentEnabledSetting(cn, PackageManager.
COMPONENT_ENABLED_STATE_DISABLED, PackageManager.
DONT_KILL_APP);

2.1.2 Hide app. When benign apps are running, they typically
show up in the running app list. In contrast, a malicious app can
run as a service, in the background, hence does not show up in the
list. In order to automatically start the malware as a service without
the user clicking the icon, a malicious app creates a BroadcastReceiver
class and registers it to receive certain events like SMS_RECEIVED,
BOOT_COMPLETED, etc. After receiving one of the registered events,
the malware’s BroadcastReceiver launches the malware as a service
in the background. As a result, the user cannot see the malicious
app in the running app list. For example, the spyware Candy_corn
automatically records Google Voice calls in the background. As
shown in the following code segment, Candy_corn monitors seven
kinds of events and starts itself as a service (if the service is not
running already):

public void onReceive(Context context, Intent intent) {

1

2

3 String act = intent.getAction () ;

4 if (Intent.ACTION_BOOT_COMPLETED.equals(act) |
5 Intent . SMS_RECEIVED.equals(act) |

6 Intent .NEW_OUTGOING_CALL.equals(act) |

7 Intent . SCREEN_OFF.equals(act) |

8 Intent . PACKAGE_INSTALL.equals(act) |

9 Intent . PACKAGE_ADDED.equals(act) |

10 Intent .SIG_STR.equals(act)) {

11 if (isServiceRunning())

12 return;

13 Intent servicelntent = new Intent(context, com.google.progress
. AndroidClientService . class);

14 servicelntent . setAction ("com.google.
ACTION_START_CALL_RECORD");

15 context. startService (servicelntent);

8}

2.1.3 Hide activity. Most malware runs as a background service.
However, starting in Android version 3.1, apps cannot create a
service without having an activity associated with that service.
Therefore, a malicious app must first create an activity. Next, to
hide the activity, the app can employ two approaches: making the
activity transparent or destroying the activity before it becomes
visible.

2The manifest file (AndroidManifest.xml), bundled with the app, contains a descrip-
tion of the app’s capabilities, system requirements, resources, permissions, etc.

Self-Hiding Behavior in Android Apps: Detection and Characterization

ICSE *18, May 27-June 3, 2018, Gothenburg, Sweden

Hide icon |

Hide app

Hide activity

Hide notification
Hide system dialog |
Block mr

Block call

Delete call log

Delete n

5

Delete system log |

R
Exclude from recents |
—

Mute phone

¥ Malware Benign

o

100 200

300 400 500 600

Figure 1: The numbers of SHBs in two sample sets of 1,000 malware apps and 1,000 benign apps, respectively.

To render an activity transparent, a malicious app needs to make
the activity’s main layout transparent, set the activity as full screen,
then remove the action bar and window title. These values can
be set in the app’s manifest file. In addition, malware can also
accomplish this via certain API methods. For example, Android API
methods setBackground(), setBackgroundDrawable() Or setBackgroundColor()
can change the activity to transparent. Methods addFlags(), setFlags
(), Or requestWindowFeature() can change the window to full screen,
as well as remove the action bar and the window title. We now
illustrate this with malware DroidKungFu3. First, the manifest file is
used to make the activity layout transparent:

<style name="Theme.NoTitle" parent="@android:style/Theme">

<item name="android:windowBackground">@android:color/transparent</
item>

<item name="android:windowNoTitle">true</item>

<item name="android:windowlsTranslucent">true</item>

<item name="android:windowContentOverlay">@null</item>

</ style>

Then, at runtime, the app sets the window flag to FLAG_NOT_TOUCH
_MODAL, meaning that even when the window is focusable, it allows
any pointer events outside the window to be sent to the windows
behind it. As a result, the user cannot see the malware activity but
can still use the activity of another app, which is just below the
malware activity — de facto the malware activity has successfully
inserted itself between the unsuspecting user and the app below:

1 protected void onCreate(Bundle savedInstanceState) {

2 super.onCreate(savedInstanceState) ;

3

4 setContentView(R.layout. activity_main);

5 getWindow().addFlags(WindowManager.LayoutParams.
FLAG_NOT_TOUCH_MODAL);

6

7}

To destroy an activity before showing it, a malicious app will
call finish () in one of the three lifecycle callback methods: onCreate(),
onStart (), Or onResume(). The finish () method in turn calls onDestroy()
to finish the activity. If finish () is called in onCreate() or onStart (), the
activity is not shown at all. But if it is called in onResume(), the screen
will flicker during the activity transition from the foreground to

the background. To prevent this, the activity is set to transparent.

We show this being accomplished in the SaveMe spyware:

protected void onCreate(final Bundle bundle)

{

super.onCreate(bundle);

[N

this . getPackageManager().setComponentEnabledSetting(this.
getComponentName(), 2, 1);

6 // 2 = COMPONENT_ENABLED_STATE_DISABLED; 1= DONT_KILL_APP

7 this. finish () ;

8 .}

2.2 Remote Communication

2.2.1 Delete Message. Sending SMS/MMS messages furtively,
in the background, is a common behavior in malware. Therefore,
several anti-malware products focus on this to recognize malware.
After sending or receiving SMS/MMS in the background, Android
saves a copy of the SMS/MMS in the outbox or inbox, respectively.
To cover its tracks, malware needs to delete this copy. The malware
usually calls delete () on a content URI, i.e., "content :// sms/inbox/" and
"content :// sms/outbox/", respectively. Furthermore, malware can also
delete SMS/MMS associated with a certain message ID, time, or
phone number. An example is malware XTaoAd.A that deletes a
message upon receipt:

1 void onReceive(android.content.Context context,android.content. Intent

intent) {
2
3 if (android.os.Build.VERSION.SDK_INT >= android.os.Build.
VERSION_CODES.KITKAT) {
4 if (! Telephony.Sms.getDefaultSmsPackage(context).equalslgnoreCase(
context . getPackageName())) {
5 context . getContentResolver () . delete (Uri. parse("content :// sms/"),
null, null);

~

1

2.2.2 Delete Call Log. After making or receiving a phone call
in the background, Android will generate a record in the call log.
To cover its traces, malware has to delete this entry from the call
log. An example is the SaveMe spyware. SaveMe has a service that
can make a call in the background (e.g., to a premium number)
as dictated by the malware’s server. We show this in Figure 4. In
the left code snippet EXT_CALL is the number to be called. After the
phone call, the malware deletes the corresponding call log entry. In

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

the right code snippet, the string s contains the number that was
just called.

2.2.3 Block Message. After a malicious app sends SMS/MMS
to sign up for a premium-rate service in the background, it will
receive a confirmation SMS/MMS sent from the service provider.
To prevent users from knowing this, the malware has to filter the
received SMS/MMS by calling abortBroadcast(). An example is Tro-
jan:Fakebank.B, shown below (please note that method a checks the
intent to see whether the SMS message has been received).

1 void onReceive(android.content.Context context,android.content. Intent

intent) {
2
3 if (! Telephony.Sms.getDefaultSmsPackage(context).equalslgnoreCase(
context . getPackageName())) {
4 a(intent . getExtras (), context);
5 abortBroadcast () ;
6
73}

2.24 Block Call. For malware that is part of a botnet, the com-
mand and control (C&C) server could call the infected phone to ask
the bot (malware app) to perform certain services; the C&C server
is encoded in the phone number. To prevent users from realizing
this, the malware needs to block the phone call. If the malware
received an intent android. intent . action . PHONE_STATE and the number
of the caller is the C&C server, then the ringer mode is set to silent
to suppress the notification of the incoming call and the phone
call is disconnected. Its corresponding entry from the call logs is
also removed, removing all traces of the phone call. An example is
malware fakeAV that uses endCall() to cancel the incoming call:

1 void onReceive(android.content.Context context,android.content. Intent

intent) {
2
3 TelephonyManager tm = (TelephonyManager) context.getSystemService(
context. TELEPHONY_SERVICE);
4 try {
5 Class ¢ = Class.forName(tm.getClass().getName());
6 Method m = c.getDeclaredMethod("getl Telephony");
7 m. setAccessible (true);
8 com.android. internal .telephony.ITelephony telephonyService = (
ITelephony) m.invoke(tm);
9 telephonyService .endCall() ;
10 } catch (Exception e) {
11 e. printStackTrace () ;
12 }
13
14}

2.3 System Reminders

2.3.1 Hide Alert. System dialogs could reveal the presence of
malware by displaying alarms, user account balances, or other
abnormal behaviors to the user. To avoid this, malware has to
dismiss the system dialog by broadcasting the intent ACTION_CLOSE
SYSTEM_DIALOGS, as shown in the following code snippet:

public void onWindowFocusChanged(boolean hasFocus) {
super.onWindowFocusChanged(hasFocus);

if (! hasFocus) {
Intent closeDialog = new Intent(Intent.
ACTION_CLOSE_SYSTEM_DIALOGS);
6 sendBroadcast(closeDialog) ;

1
2
3
4
5

Zhiyong Shan, lulian Neamtiu, and Raina Samuel

9}

2.3.2 Hide Notification. Apps can send alerts to the user by gen-
erating a notification on the notification bar. But the malware can
delete notifications by calling NotificationManager’s methods cancel ()
or cancelAll () when receiving notifications. An example is malware
Bios.NativeMaliciousCode.apk:

1 void clearNotify (android.content.Context context){
2

3 ((android.app.NotificationManager) context.getSystemService("
notification ")) . cancel (1) ;

50}

2.3.3 Mute Phone. To cover their presence, malicious apps of-
ten resort to muting the phone or disabling the vibrate function, to
prevent the user from hearing the sound of alarms, notifications,
phone calls or incoming SMSs. This can be accomplished in a vari-
ety of ways: switching to silent mode, calling the vibrator service,
setting the phone to mute, or adjusting the volume to the lowest
level. An example is the Trojan iBanking:

1 void a(android.content.Context context){
2

3 ((android.media.AudioManager)context.getSystemService("audio")) .
setStreamMute(AudioManager.STREAM_ALARM, true);

5}

2.3.4 Exclude From Recent Apps List. After an app has run, the
system puts its activities into the recent apps list. To prevent this,
malware can set the flag excludeFromRecents in the manifest file, or
by calling ActivityManager.setExcludeFromRecents(). An example is Tro-
jan:Malapp.
< activity android:name="com.yangccaa.chengaa. WEYY"

android:label="@string/notification_name"

android: taskAffinity =". NotificationActivity "

android:excludeFromRecents="true">

<intent — filter >
<action android:name="android.intent. action . MAIN" />
<category android:name="android.intent.category. LAUNCHER" />
</ intent — filter >
</ activity >

2.3.5 Delete System Log. Android saves system activity into the
system log, which can be viewed via the logcat. Malware can call
adb logcat -c to delete the logs if the phone is rooted or if the
Android API is lower than 16. We present an example of such an
action extracted from the trojan SMSblocker:

1 r = getRuntime();
2 r.exec("logcat —c");

3 DETECTING SH BEHAVIORS

Our approach relies on a suite of static analyses to detect SHBs.
Figure 2 shows an overview of our tool’s design. The input is an
APK file (APK is the format Android apps are distributed in). We
pass the bytecode to Soot [12]/FlowDroid [13] which perform basic
tasks such as alias analysis, call graph analysis, as well as fixpoint
computations to deal with loops and recursion. Next, we perform

Self-Hiding Behavior in Android Apps: Detection and Characterization

ICSE *18, May 27-June 3, 2018, Gothenburg, Sweden

SH Call Analysis (SAPI)

Pair Action Analysis (PAPI)

Soot/Flowdroid

Alias analysis
Call graph analysis

User Decision Analysis (UD)

SH Behavior

k

Detection Rules

reports

Activity Finish Analysis (AF)

Attribute Analysis

)

XML file Analysis

Figure 2: Tool overview.

Stage 1: control- Stage 2: data-
flow analysis flow analysis
Origin

(%]
< £
Q callee, == defn 2
© v, G
oo callee, 1— ; g
S ¢ "2

: . qg
callee =
" N .
=) use
SAPI call (param)

Figure 3: SAPI analysis.

our core analyses (described shortly) on both bytecode and XML
files. Finally, a report detailing the potential SHBs is produced.

3.1 Static Analysis

3.1.1 Finding SH Call Invocations (SAPI Analysis). Our first anal-
ysis finds whether SH API calls are invoked (we name this SAPI anal-
ysis for short). We present the analysis in Figure 3. Specifically, the
analysis starts at an Origin (app or activity start). In the first stage,
we use control-flow and call graph analysis to find whether a certain
SAPI call is invoked - green nodes and edges on the left represent
methods and call graph edges, respectively. In the second stage,
we use backward dataflow analysis to find if the call is invoked
with certain SH-indicating parameters; more precisely, we walk
the def-use chains backwards (shown in black) until we can find the
parameter definition, e.g., a constant or an alias. In Table 1 we show
the origins and SAPI calls for each SHB. For example, to detect the
“Hide app” SHB, our analysis will check whether the call to Context.

startService () is reachable when starting in BroadcastReceiver.onReceive().

To check for “Delete message” on the other hand, we start track-
ing from BroadcastReceiver . onReceive(SMS_RECEIVED/ACTION_VIEW) to see
if we can reach ContentResolver.Delete (); next, we walk the def-use
chains backwards to see if the argument is "content :// sms". For cer-
tain behaviors, e.g., “Hide activity”, we use all the app’s entry points
as origin; app entry points are provided by FlowDroid.

We now provide an example from the real malware DroidKungFuT,
which deletes all SMS messages. In this case we show simplified
disassembled code, from which we have removed irrelevant instruc-
tions.

1 specialinvoke $r3.<java.lang. StringBuilder : void <init >(java.lang.
String) >("content :// sms/")

2 $r4 = virtualinvoke $r3.<java.lang. StringBuilder : java.lang. String
toString () >()
3 $r5 = staticinvoke <android.net.Uri: android.net.Uri parse(java.lang.

String) >($r4)
4 virtualinvoke $r2.<android.content.ContentResolver: int delete (android
.net.Uri,java.lang. String ,java.lang. String []) >($r5, null, null)

Let us assume that our analysis has determined that an invo-
cation of ContentResolver.Delete () is reachable from BroadcastReceiver.
onReceive(PHONE_STATE). To check the value of Delete()’s parameter,
we walk the def-use chains backwards starting at $r5 (that is used
at line 4 and defined at line 3). As line 3 calls method parse (), we
proceed further on $r4 and then $r3. Eventually on line 1 we see
the definition, i.e., "content ;// sms/". This concludes our analysis and
we report the potential “Delete message” behavior.

3.1.2 Pair Action (PAPI) Analysis. Another broad self-hiding
category consists of pair actions, where an app first performs a ma-
licious action then deletes traces of this action, e.g., deleting a text
message after sending it. Our analysis (we name this PAPI analysis
for short) detects six types of pair actions: send message/delete
message log, receive message/delete message log, receive/block
message, make phone call/delete call log, receive phone call/delete
call log, receive/block phone call.

Our pair action detector uses data flow analysis in a manner
similar to taint analysis to see if data flows from a pair start to a pair
end. The paired methods and the SHB are listed in Table 2. Figure 4
shows a code snippet from the real malware Saveme that deletes a
call from the call log. Our tool detects data flow from startActivity
() to contentResolver . delete (). Actually EXT_CALL on line 2 (left) and s
on line 4 (right) have the same value - the phone number called.
Therefore, the pair (Context. startActivity (),contentResolver . delete ()), is
detected, indicating the SHB “Delete call log”.

3.1.3 User-decision (UD) Analysis. To reduce potential false pos-
itives in cases where SAPI methods are also used by benign apps,
we perform a user-decision analysis that checks whether an API

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Zhiyong Shan, lulian Neamtiu, and Raina Samuel

Table 1: SH call (SAPI) analysis.

SH Behavior

Origin

SH Call (SAPI)

Hide app

BroadcastReceiver.onReceive(ACTION_BOOT_COMPLETED
/SMS_RECEIVED/NEW_OUTGOING_CALL/SCREEN_OFF/
PACKAGE_INSTALL/PACKAGE_ADDED/SIG_STR)

Context. startService ()

Hide activity

any
entry
point

Window.addFlags(FLAG_NOT_TOUCH_MODAL)
Window.setFlags(FLAG_NOT_TOUCH_MODAL,x)
Window.requestFeature(FLAG_NOT_TOUCH_MODAL)

Delete message

BroadcastReceiver.onReceive(SMS_RECEIVED/ACTION_VIEW)

ContentResolver.Delete("content :// sms")

Delete call log

BroadcastReceiver.onReceive(PHONE_STATE)
PhoneStateListener.onCallStateChanged(TelephonyManager.
CALL_STATE_RINGING)

ContentResolver.Delete("content :// cal_log/ calls ")

Block message

BroadcastReceiver.onReceive(SMS_RECEIVED)

BroadcastReceiver.abortBroadcast("content :// sms")

Block call BroadcastReceiver.onReceive(PHONE_STATE) ITelephony.endCall()
PhoneStateListener.onCallStateChanged(TelephonyManager.
CALL_STATE_RINGING)

Hide alert any entry point Context.sendBroadcast(Intent .

ACTION_CLOSE_SYSTEM_DIALOGS)

Hide notification

BroadcastReceiver .onReceive ()

NotificationManager. cancel ()

NotificationManager. cancelAll ()

Mute phone

any
entry
point

Vibrator . Cancel ()
AudioManager.setRingerMode(RINGER_MODE_SILENT)
AudioManager.setStreamMute(true)
AudioManager.adjustStreamVolume(ADJUST_LOWER)

Delete system log

any entry point

Runtime.Exec("logcat —c")

Intent locallntent = new Intent("” android. intent . action . CALL");
localintent .setData(Uri.parse(" tel:" + EXT_CALL));

1 try {
2

3 localintent .addFlags(FLAG_ACTIVITY_NEW_TASK);

4

5

final Uri parse = Uri.parse("content:// call_log / calls");
if (contentResolver != null){
localintent .addFlags(FLAG_FROM_BACKGROUND); contentResolver . dele}f(parse. "number=?", new String[]{ s });

this . startActivity (intent);

} catch (Exception ex){
ex. getMessage();

}

o 2 & W oot =

Data Flow Analysis

Figure 4: Code snippets of malware Saveme that implement the “Delete call log” SHB.

Table 2: Pair action (PAPI) analysis.

SH Behavior Pair start Pair end

Delete message SmsManager.sendTextMessage()/sendMultipartTextMessage()/ ContentResolver. Delete ()
sendMultimediaMessage()

SmsMessage.createFromPdu()

Delete call log Context. startActivity ()

PhoneStateListener.onCallStateChanged()

ContentResolver.Delete ()

BroadcastReceiver .onReceive ()

Block message SmsMessage.createFromPdu() BroadcastReceiver . abortBroadcast ()

Block call

BroadcastReceiver.onReceive ()

PhoneStateListener.onCallStateChanged()

ITelephony.endCall ()

method invocation is the result of an user decision. We name this
UD analysis for short.

The user’s GUI actions can be decision-related or decision-unrelated,
as explained next. Decision-related actions include clicking a but-
ton, checking a checkbox or selecting a menu item; in other words,
the user takes decisions (and acts accordingly) in a way meant to

Self-Hiding Behavior in Android Apps: Detection and Characterization

change the app state. Examples of decision-unrelated actions in-
clude scrolling down a window or changing focus. If an SAPI is
invoked by a decision-related action, we rule that call as legitimate,
rather than an SH attempt. However, if invoked by a decision-
unrelated action, it can be an SHB. Note that existing research can
only detect whether an API is invoked by a GUI [15, 17], whereas
we further consider whether the GUI can reflect decisions.

In order to present the user-decision analysis approach, we intro-
duce several definitions. User-Decision-GUI (UDG) is an interactive
GUI element, e.g., Button, Checkbox, Radio Button, Toggle Button,
Spinner, Picker, or menu. User-Decision-Callback (UDC) is a top-
level callback method directly invoked as a result of the user action,
e.g., onClick (), onCheckedChanged(). In contrast, some callback methods
are due to decision-unrelated actions, e.g., onBackPressed(), onScroll (),
onEditorAction ().

Android offers two ways for creating a correspondence between
a callback method and a GUI element: statically defining the call-
back as the handler of an event in the GUI element’s layout file or
dynamically defining a callback for the GUI element by registering
a listener object — we handle both.

We determine that a given callback is an UDC if either of these
two conditions is satisfied:

o The corresponding GUI of the callback is an UDG, and the
event to be handled by the callback is a decision-related
event, e.g., click. Note that there exist decision-unrelated
events, e.g., scroll and focus change.

o The corresponding GUI of the callback is an UDG, and the lis-
tener of the callback is decision-related, e.g., onCheckedChange
Listener. Note that there exist decision-unrelated listeners,
€.8., onCreateContextMenulListener and onFocusChangelListener.

Finally, we infer that an API invocation is user-decided if all of
its callbacks are UDC, which includes callbacks within the same
component and callbacks in other components. If any callback is
not UDC, we infer that the API call is not invoked by the user —
further, if this call is an SAPI, it is potentially an SHB.

3.1.4 Activity Finish Analysis. This analysis detects activity hid-
ing, i.e., whether an activity is terminated prematurely, before being
displayed, as illustrated in Section 2.1.3. To achieve this, the activity
calls finish () within onCreate(), onStart(), or onResume() (or their de-
scendants in the call graph). Therefore, our analysis starts at the
beginning of these three callback methods. We perform a control
flow analysis to check whether there exists a path from the begin-
ning of the callback to the callback’s end that includes finish (); if
such a path exists, it indicates potential activity hiding. We name
this AF analysis for short.

3.1.5 Attribute Analysis. The purpose of this analysis is to check
whether the app attempts to manipulate activity attributes in or-
der to deceive the user. The analysis checks both the XML mani-
fest file and the attribute-related API methods. For example, the
liner layout of an activity has an attribute “background color”.
If the attribute value is #00000000, the activity is transparent. An
app can set the value of an attribute in the manifest or layout
files, or by calling certain API methods, e.g., setBackgroundDrawable(),
setBackgroundColor() Or setBackgroundResource(). Another example is the

ICSE *18, May 27-June 3, 2018, Gothenburg, Sweden

attribute excludeFromRecents which can be specified in the manifest
file, or set via the API methods setFlags () and addFlags().

3.2 Detection Rules

We use SAPI PAPI, UD, AF, and Attribute to denote the five static
analyses. The detection rules for the SHBs are shown in Figure 5. If
any of the rules fires, the tool will report the app as malicious. We
now explain each rule.

Rule 1 reports “Hide icon” when the main activity is removed
from the home screen without user involvement. Rule 2 detects
“Hide app” if starting an app as a service without user involvement.
Rule 3 reports “Hide activity” when the activity finish analysis re-
turns true or the main activity is transparent. Rule 4 infers behavior
“Delete message” when deleting occurs after receiving or sending a
message. Rule 5 reports “Delete call log” when deleting occurs after
making or receiving a phone call. Rule 6 detects “Block message”
if blocking received or sent messages. Rule 7 reports “Block call”
when blocking incoming or outgoing phone calls. Rule 8 reports
“Hide alert” if the app closes a system dialog without user involve-
ment. Rule 9 infers behavior “Hide notification” when canceling a
notification without user intervention. Rule 10 detects “Mute phone”
when muting the phone surreptitiously. Rule 11 finds SHB “Exclude
from recent apps list” if the attribute EXCLUDE_FROM_RECENTS is set
without user’s involvement. Rule 12 reports “Delete system log” if
that specific shell command is not launched by the user.

3.3 Implementation

We implemented our tool on top of the Soot and FlowDroid static
analysis frameworks. These frameworks only analyze bytecode,
so we added modules to analyze XML files (e.g., categories and
attributes in AndroidManifest.xml, style.xml, etc). Our static
analysis modules use both data-flow and control-flow analyses.
Finally, the analysis results are produced using the detection rules.

3.4 Limitations

Limitations/false negatives. Our tool has several analysis limita-
tions. First, if an SHB is invoked by GUI interaction but the GUI text
does not reflect the invocation of the SHB, the tool will not report
it; Huang et al’s idea of finding mismatches between user interface
and app behavior [17] could be used to address this limitation. Sec-
ond, there were a few apps that, due to obfuscation, could not be
analyzed, e.g., TripAdvisor (com. tripadvisor.tripadvisor.apk)
and KCLS
(com.bibliocommons.kcls.apk).

Improving precision/reducing false positives. Our analysis, built
on top of FlowDroid, is based on over-approximation, and handles
reflection/native code conservatively — this can be a source of false
positives. Also, the SAPI functions with zero parameters tend to
have more false positives — a more precise alias and flow analysis
would improve precision.

Broader concerns. There could be other classes of SHBs, beyond
the ones we have discovered. Nevertheless, our list of SHBs: (1) is
effective at malware discrimination, and (2) exposes questionable
practices in benign apps.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Zhiyong Shan, lulian Neamtiu, and Raina Samuel

ActivityFinish () Vv ((UD A AttributeAnalysis(Transparent_Main_Activity) A SAPI(Set_Flags))
'UD A SAPI(Delete_Sms_Mms) A (PAPI(Receive_Sms_Mms) V PAPI(Send_Sms_Mms))

1UD A (PAPI(Make_Phone_Call) vV PAPI(Receive_Phone_Call)) A SAPI(Delete_Call_Log)

1UD A SAPI(Block_Sms_Mms) A PAPI(Receive_Sms_Mms) A PAPI(Send_Sms_Mms)

'UD A SAPI(Block_Phone_Call) A PAPI(Receive_Phone_Call) A PAPI(Make_Phone_Call)

'UD A (SAPI(Cancel_Vibrate) V SAPI(Mute) V SAPI(Adjust_Volume) V SAPI(Chang_Ringer_Mode))

1 Hide icon 'UD A RemoveFromHomeScreen(MainActivity)
2 Hide app 1UD A SAPI(Start_service)
3 Hide activity
4 Delete message
5 Delete call log
6 Block message
7 Block call
8 Hide alert 1UD A SAPI(Close_System_Dialog)
9 Hide notification 1UD A SAPI(Cancel_Notification)
10 Mute phone
11 Exclude from recent apps list !UD A AttributeAnalysis(EXCLUDE_FROM_RECENTS)
12 Delete system log 1UD A SAPI(Delete_Logcat)

Figure 5: Detection rules.

Finally, our approach cannot recognize specific malware fam-
ilies: certain SHBs might span multiple malware families. This is
expected, as our design goal was at a lower level, automatic SHB
identification, rather than clustering malware by family.

4 EVALUATION

In this section, we present an evaluation of our approach along
several dimensions: Is the approach effective at identifying SHBs?
Is the approach efficient? What are the main causes of false posi-
tives/false negatives? We begin by describing the two datasets used
in our evaluation.

Datasets. Our first dataset, which we name MA-198, contains
198 malware samples that were decompiled and analyzed manu-
ally, in detail. The 198 samples come from the Malware Genome
Project [31], Drebin [11], and AndroZoo [10].

The second dataset, which we name ALL-9452, consists of 6,233
benign apps® and 3,219 malicious apps.* These apps were analyzed
automatically. To ensure that the benign set does not contain mal-
ware, we sent all the apps in this set to VirusTotal [7], a public
malware scanning service. If an app is reported by at least one com-
mon anti-virus tool as malicious, we removed it from the benign
set. For the malware samples, we performed a quick and simple
static analysis to eliminate the samples without any possibility to
have SHBs. This is done by searching requested permissions, major
SAPI calls and intent actions. For example, if an app does not have
permissions SEND_SMS and RECEIVE_SMS, it is impossible to have the
SHB “Delete message”. Moreover, in order to make sure that the
samples are malware, we sent them to VirusTotal. If an app was
reported malicious by less than two scanners, we removed it from
the malware set.

Platform. The static analysis tool ran on an 8-core Intel Xeon
17-4770 (8MB Cache, 3.4 GHz) with 32GB of RAM. The system ran
Ubuntu 14.04.1, Linux kernel version 3.13.0-32-generic.

3The benign app samples are from Google Play and AndroZoo [10]; specifically, 4,970
(70%) of the benign apps are from Google Play and span all 33 app categories, as well
as games.

4The malware samples are from Drebin [11], DroidCat [3], Kharon [5], AndroMal-
Share [2], Malware Genome Project [31], and Offensive Computing [6].

Table 3: Effectiveness results on MA-198.

True | Over-reported Under-reported
SHBs SHBs (FP) SHBs (FN)
| 219 | 46 | 27 |

Recall: 212 _ = 89.02%

se 219
Precision: 1944 = 82.64% ACEH

. 82.64%89.02 _
F—measure: 2 * 6478008 = 99-71%

4.1 Effectiveness

The test for evaluating effectiveness consists of two steps: SHB
detection validation (manual) and large scale measurement (auto-
matic).

4.1.1 Manual Cross-checking on MA-198. As there is no existing
oracle to determine SHB, we manually verified each static analysis
report. Specifically, we reverse-engineered each app — decompiled
the app (to source code) via the JADX decompiler [4]. Note that
decompilation is not always possible due to obfuscation, so some of
our manual analysis was based on source code inspection, some on
Dalvik bytecode inspection. The results are shown in Table 3. Our
tool has reported 265 SHBs in total; of these 219 were true SHBs,
while 46 SHBs were over-reported (false positives) and 27 were
false negatives, i.e., our tool missed those SHBs (the reasons will be
discussed in Sections 4.1.3 and 4.1.4, respectively). This yields an
F-measure of 85.71%, indicating that our tool is quite effective.

4.1.2 Automated Analysis on AA-9452. We now turn to dis-
cussing the large-set results, shown in Table 4. Note that here the
numbers in columns 2-4 indicate apps, not SHBs (since we only
have ground truth for app nature, not SHBs).

A sample is identified as malicious if it exhibited any one of the
SH behaviors. The tool missed (false negatives, or ‘FN’) 311 samples
from the malware set, hence the recall value is 90.62%. The tool
also reported 996 benign apps as having SHB (false positives, or
‘FP’) from the benign set, hence the precision is 84.02%. While these
996 apps were not malicious, their use of SHB is questionable — we
discuss such uses at length in Section 5.

Self-Hiding Behavior in Android Apps: Detection and Characterization

Table 4: Effectiveness results on AA-9452.

Apps Apps reported as SHBs | SHBs
Malicious ‘ Benign /app
Malicious set | 3,219 2,908 311 | 4,843 1.5
(FN)
Benign set 6,233 996 5,237 | 1,241 0.2
(FP)
L. 5237 _ . 2,908
Precision: 53755 = 84.02% Recall: 79084311 = 90-62%
. 84.02%90.62 _
F—measure: 2 + gz 5555 = 87.19%
hide icon :‘ % ‘ ;
hide app)ﬁ—‘ \
hide activity |
hide alert | ‘ ‘ ‘
hide notification |
delete message |
delete call log |
delete system log [——
block message [
block call §
mute phone S
exclude from recents
0 50 100 150 200 250 300

Figure 6: FPs generated by each SHB.

Finally, the F-measure is 87.19%; the malware set exhibited 1.5
SHB per sample on average® while the benign set exhibited only
0.2 SHB per sample. We believe that the high F-measure value and
the per-app figures of 1.5 SHB (malicious) vs 0.2 (benign) indicate that
our approach is effective for detecting SHB (and perform SHB-based
triaging) in Android apps.

4.1.3 False Positives. To better understand the causes of false
positives, in Figure 6 we have grouped them by SHBs. Five SHBs,
“hide activity”, “hide notification”, “hide icon”, “hide app” and “delete
system log”, generated the most false positives. We investigated

this and found that the false positives were due to several reasons:

(1) Certain apps employ SHB, such as running in the background
without the user having started the app, or without the user
being able to see that running app, in the name of improving
user experience (see Section 5).

(2) Static Analysis: alias, data-flow, and control-flow analyses
are over-approximating, which is inherent in static analysis.

4.1.4 False Negatives. We have categorized the false negative
sources as follows:

(1) Parameters of an SHB are dynamically sent from a remote
control server, hence our static analysis cannot identify the
behavior. For example, spyware Saveme has a remote server

5Median = 1, min = 0, max = 5.

ICSE *18, May 27-June 3, 2018, Gothenburg, Sweden

that sends the id, time or phone number through the network
to delete certain SMS/MMS messages.

(2) SHBs are launched by GUI interaction, but the behavior
mismatches the content shown on the GUIL For example,
apps Pure girl and iCalendar employ this behavior.

(3) Some malware samples do not have SHB, though they do
invoke SAPI calls, e.g., Towelroot and FakeCMCC. Our tool
did not identify these samples as malicious.

4.1.5 Behavior statistics. Figure 1 shows the number of each
type of SHBs detected per 1,000 malware samples and 1,000 benign
samples, respectively.® The total number of SHBs detected in the
malware set is 1502 per 1000 samples while in the benign set it is
only 185 per 1000 samples. “Hide app”, “Hide activity” and “Block
message” are the three most common SHBs in the malware set.

4.2 Efficiency

Running our tool on the 9,452 apps took about 10 days. We show the
detailed efficiency results in Table 5. The “Bytecode size” grouped
columns show that the datasets had substantial variety in terms
of app size, and some apps’ bytecode size was as large as 24 MB.
The “Time” grouped columns show running time statistics for each
dataset. We focus on AA-9452 as it is larger, hence more representa-
tive. The mean analysis time was 84 seconds while the median was
37 seconds, which shows that our analysis is practical. Finally, we
believe that even the maximum analysis time of 15,290 seconds (i.e.,
4 hours 15 minutes) is acceptable for a static analysis. To conclude,
with a median analysis time of 37 seconds on a median app size of
2.4MB we believe that our approach is efficient at SHB analysis.

5 SELF-HIDING BEHAVIOR IN BENIGN APPS

For each SHB category our tool has found in benign apps, we per-
formed a two-part targeted manual investigation: first, we analyzed
the disassembled bytecode, and then ran the app with instrumen-
tation to confirm the SHB. We focused this investigation on two
categories of apps: (1) apps that are very popular, e.g., with more
than 100 million installs; or (2) less popular apps which displayed
severe cases of SHB. Ultimately we aimed to answer the questions “
Why does this SH behavior occur and what are the consequences
for the user?” This section summarizes some of our findings; we
limit the discussion to 8 SHBs for brevity.

5.1 Hide App

Many popular benign apps, such as Airbnb and BBM start themselves
as an automatic service after receiving the BOOT_COMPLETED event.
This event, which requires the permission RECEIVE_BOOT_COMPLETED
, notifies the app that the system has rebooted. In conjunction with
this event and permission, there is a function which launches the
auto-start service. Our tool reports this as “Hide app” SHB. Apps em-
ploy this technique as a means to initialize app-specific information
and functions upon startup. While it could be argued that the app
is not hiding in the malicious sense (rather it is running in the back-
ground to have access to certain types of data — most commonly,
location services), we believe that users should know when such

The 1,000 benign apps are a random sample extracted from the 6,233 benign apps,
while the 1,000 malicious apps are a random sample extracted from the 3,219 malicious

apps.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Zhiyong Shan, lulian Neamtiu, and Raina Samuel

Table 5: Efficiency results.

Dataset Bytecode size (KB) Time (seconds)

min ‘ max ‘ average ‘ median || min ‘ max ‘ average ‘ median
MA-198 32 | 15,021 5,326 1,995 13 6,596 140 32
AA-9452 5| 24,218 4,496 2,459 2 | 15,290 84 37

apps are running;: (1) so they understand why the battery is drain-
ing, and (2) so they understand the privacy implications of apps
accessing and transmitting sensitive information (e.g., location) in
the background.

5.2 Hide Notification

Certain apps, such as Waze, Truecaller, All in One Toolbox, Quick
Heal Mobile Security, and MiniFetion use NotificationManager. cancel () Or
NotificationManager. cancelAll () to block notifications without user in-
tervention. As a result these apps have been marked as having the
“Hide notification” SHB. This is due to the nature of cancel () and
cancelall (), which cancel all previously-shown notifications. Apps
employ this technique as a means to update the user to the most
recent notification or to consolidate notifications, especially in com-
munication apps such as MiniFetion and TrueCaller. Lately, many
“clean up” and “device maintenance” apps have started to exhibit
this behavior for the same reasons. Consolidated notifications may
appear convenient to the user, however the app does not have a
means to show high-priority notifications first (other than through
chronological order). Therefore, users might prefer to receive notifi-
cations for all messages to reduce the risk of missing an important
notification. However in the case of Waze, the app blocks certain
notifications using Vanagon Notification Manager which cancels all
app notifications when the user is not driving. While the app might
be trying to appear helpful, notification cancellation and blocking
without user’s consent/awareness is questionable at best.

5.3 Mute Phone

Our tool discovered the use of AudioManager.setRingerMode() in the be-
nign app Camera360. As its name states, this is a camera app which
edits and takes photos; it has more than 100 million installs and
was “Best App of 2016 on Google Play in several countries”.” Many
camera apps use volume controls when recording audio. Our tool
also discovered the “Mute phone” SHB in certain benign popular
apps like Smart Truck Route and All in One Toolbox due to the use
of Vibrator . cancel () and AudioManager.setRingerMode(). Regarding Smart
Truck Route, the app directly checks and manipulates the device’s
audio settings, including its ringer mode. As for All in One Toolbox,
the app mutes the phone based on the SDK version of the device.
This is dubious behavior for a utility app aimed at optimizing the
Android device. To sum up, even though it seems reasonable in
some of these cases, we believe that muting the phone should be
done by the user through a system-wide control rather than silently

by the app.

"https://play.google.com/store/apps/details?id=vStudio.Android.Camera360&hl=en

5.4 Block Message

As the BroadcastReceiver is usually a dormant app component, it is
not surprising that its methods can be categorized as SHBs, es-
pecially abortBroadcast (). As a result, many benign apps can exhibit
this behavior. Interestingly, these apps are not limited to those
which rely heavily on BroadcastReceiver. For example, the popular
navigation app Waze uses abortBroadcast() which can be construed
as the “Block Message” SHB. The abortBroadcast () method is used to
prevent other receivers from obtaining the broadcast, thus block-
ing the communication. It might be justified that Waze employs
this tactic as a means to prevent itself from getting location-based
alerts that may be irrelevant or annoying to the user. While the
intentions of message-blocking apps might appear benign, such
blocking removes decision-making from the user and can interfere
with usability.

5.5 Block Call

Apps which use ITelephony.endCall() are considered to have the ‘Block
Call” SHB. The benign app Truecaller has the sole purpose to identify
and block spam calls, hence it was obviously marked to have this
behavior. Despite explicitly stating that it automatically blocks
calls, an app which decides for the user which calls are spam can
be maliciously manipulated against the user’s interest.

5.6 Hide Icon

“Hide icon” achieves its goal by deleting an activity’s category. LAUNCHER
from the Android manifest. While this deletion merely indicates
that that activity should appear as an initial activity of a task, it
is evident that a deceitful app can use hide-icon to promote other
activities, masking the deceitful app beneath. Many popular benign
apps such as ES File Explorer and Next Launcher 3D Shell Lite have this
behavior. For example, app Next Launcher 3D Shell Lite is a premium
launcher for Android’s home screen, but one of its key features is
that it draws 3D icons and widgets over their original counterparts.
App ES File Explorer has permissions to draw over apps, which is
surprising and might be regarded as excessive for a file manager.
By having the ability to promote certain activities and controlling
the launcher’s top level apps, apps with this SHB should be treated
with caution.

5.7 Delete Call Log

The app Quick Heal Mobile Security exemplifies this SHB. The app
uses ContentResolver.Delete () to delete the call logs on the device. The
app has call filtering capabilities and has explicit permissions to
read and write call logs on the user’s device. Nevertheless, (1) users
may not be aware of the security implications of log deletion, and

https://play.google.com/store/apps/details?id=vStudio.Android.Camera360&hl=en

Self-Hiding Behavior in Android Apps: Detection and Characterization

(2) the user does not initiate call deletion. These two factors make
this particular SHB instance quite problematic.

5.8 Delete System Log

MiniFetion, an app from the Baidu app marketplace, sends free SMS
to the user’s contacts. Despite the seemingly straightforward nature
of the app, we found two highly questionable behaviors. First, the
app deletes the system log via "logcat -c". Second, the app has
an activity MobClickAgent which uploads device logs to a third party
server. Thus the app is able to manipulate, as well as exfiltrate, the
system logs without the user’s awareness. While not many popular
apps have this SHB, users need to be extremely suspicious of any
app which send device logs and user information to third-party
Servers.

6 RELATED WORK

Behavior-based malware detection for Android has been long been
studied due to the prevalence of malware in the Android ecosys-
tem; a variety of methods for characterization and behavior-based
detection have been proposed.

Malware behavior characterization. CopperDroid characterizes
malware behavior based on how it is initiated, either through Java,
JNI, or native code execution [20]. SmartDroid uses a combination
of static and dynamic analysis to detect conditions as a way to
expose the behavior of Android malware in Ul-based triggers [29].

Machine learning. Crowdroid uses crowdsourcing to obtain traces
of an app’s behavior [14]; it distinguishes between benign and ma-
licious apps of the same name and version by detecting anomalous
behavior using k-means; some limitations include having to rely on
the Android user community as a source for app traces, as well as
having high energy consumption on devices. PUMA [21] evaluates
the scope and use of permissions. DREBIN [11] uses both static
analysis and machine learning to optimize analysis and detection
patterns; MAMA [22] uses classifiers based on features to detect
malware. Yerima et al. [28] use static analysis to build Bayesian
models as a way to detect evasive malware. Andromaly applies ma-
chine learning (anomaly detectors) to classify features and events
as benign or malicious [25]. DroidRanger uses a permission-based
footprinting scheme to detect malware followed by a heuristic-
based filtering scheme to identify behavior of unknown malware
families [32]. Droid Detective detects malware based on permission
combination [19]; by obtaining permission combinations which
have been requested frequently by malware, it auto-generates sets
to be used as a means of identifying malware. MONET combines
runtime behavior with static structures to detect malware vari-
ants and to generate a runtime signature of the malware [27]. AV-
class performs massive-scale malware labeling through clustering
anti-virus labels, and identifying the most likely family names for
each sample [24]. Similarly, Euphony categorizes malware samples
based on clustering the anti-virus labels produced by anti-virus
vendors [18].

Static analysis. Apposcopy uses static analysis to extract mal-
ware properties, and takes a more semantics-oriented approach to
classify malware based on its signature [16]. However one of its
biggest limitations is that it cannot detect obfuscation or self-hiding.

ICSE *18, May 27-June 3, 2018, Gothenburg, Sweden

Another signature-based tool is Droid Analytics which collects, man-
ages, and extracts malware and analyzes mutations and repackaging
methods [30]. Similarly, Droid APIMiner uses classifiers based on se-
mantic information from the bytecode of apps, namely API calls [9].
Using dataflow analysis and frequency analysis, it captures the
most common and relevant API calls used by malware. Feng et al.
focus on a structure of information flows gathered through the se-
quence of API calls and the patterns of behavior present to identify
malware [26]. Similarly, we have employed such API and dataflow
analyses in our work to analyze SHB. MADAM is a host-based mal-
ware detection system for Android devices [23]; it analyzes features
at 4 levels — kernel, app, user, and package — which enables it to
detect 125 existing malware families.

Rather than focusing on general behavior-based analysis of mal-
ware, we implement a range of static analyses to detect SHB and
malware. Machine learning, while useful in better understanding
malware behavior, has several disadvantages, e.g., the models it
learns are opaque whereas we have a static analysis report that
helps users/developers/marketplaces trace the SHB precisely; fur-
thermore, machine learning may oversimplify SHB resulting into
large numbers of false positives. Most static analyses of malware
are focused on behavior and do not employ attribute analysis as
we do; this analysis is key in identifying SHB such as transparent
activities. Finally, our work differs from dynamic analysis-based
approaches in the standard static vs. dynamic analysis way: due
to static analysis our approach is prone to false positives, but does
not require running the app. Dynamic analysis is prone to false
negatives and requires high-quality inputs to ensure good coverage.

7 CONCLUSION

Motivated by the common tendency of Android malware to self-
hide in order to deceive users and cover malicious traces, we define
a set of self-hiding behaviors and construct a suite of static analyses
to reveal such behavior. Our experiments indicate that the presence
of self-hiding behavior is strongly associated with malice in a given
app. Nevertheless, we also found plenty of benign, widely-popular
apps that employ hiding techniques, which suggests that end-users
and marketplaces would benefit from using an approach like ours
to shed light on potential nefarious behavior in Android apps and
improve user experience.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feedback.
This material is based upon work supported by the National Science
Foundation under Grant No. CNS-1617584. Research was sponsored
by the Army Research Laboratory and was accomplished under
Cooperative Agreement Number W911NF-13-2-0045 (ARL Cyber
Security CRA). The views and conclusions contained in this doc-
ument are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of
the Army Research Laboratory or the U.S. Government. The U.S.
Government is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation
here on.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

REFERENCES

(1]

[10]

[11]

[12

[13

[14

[15

[16]

(17

[18]

2017. 8,400 new Android malware samples every day.
(April 2017). https://www.gdatasoftware.com/blog/2017/04/
29712-8-400-new-android-malware-samples-every-day.

2017. AndroMalShare. (August 2017). http://sanddroid.xjtu.edu.cn:8080.

2017. The DroidCat Dataset. (June 2017). http://www.people.vcu.edu/~rashidib/
Res_files/DroidCatDataset.htm.

2017. JADX. (August 2017). http://skylot.github.io/jadx/.

2017. Kharon project. (May 2017). http://kharon.gforge.inria.fr/index.html.
2017. Open Malware. (August 2017). http://www.offensivecomputing.net/search.
cgi?search=android.

2017. VirusTotal. (August 2017). https://www.virustotal.com.

2018. Global mobile OS market share in sales to end users from 1st quarter 2009
to 2nd quarter 2017. (February 2018). https://www.statista.com/statistics/266136/
global-market-share-held-by-smartphone-operating-systems/.

Yousra Aafer, Wenliang Du, and Heng Yin. 2013. Droidapiminer: Mining api-level
features for robust malware detection in android. In International Conference on
Security and Privacy in Communication Systems. Springer, 86—-103.

Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon. 2016.
AndroZoo: Collecting Millions of Android Apps for the Research Community. In
Proceedings of the 13th International Conference on Mining Software Repositories
(MSR ’16). ACM, New York, NY, USA, 468-471. https://doi.org/10.1145/2901739.
2903508

Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad Rieck,
and CERT Siemens. 2014. DREBIN: Effective and Explainable Detection of An-
droid Malware in Your Pocket.. In NDSS.

Steven Arzt, Siegfried Rasthofer, and Eric Bodden. 2017. The Soot-based Toolchain
for Analyzing Android Apps. In Proceedings of the 4th International Conference on
Mobile Software Engineering and Systems (MOBILESoft '17). IEEE Press, Piscataway,
NJ, USA, 13-24. https://doi.org/10.1109/MOBILESoft.2017.2

Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014. Flow-
Droid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint
Analysis for Android Apps. In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI '14). ACM, New
York, NY, USA, 259-269. https://doi.org/10.1145/2594291.2594299

Iker Burguera, Urko Zurutuza, and Simin Nadjm-Tehrani. 2011. Crowdroid:
behavior-based malware detection system for android. In Proceedings of the 1st
ACM workshop on Security and privacy in smartphones and mobile devices. ACM,
15-26.

Karim O. Elish, Danfeng (daphne Yao, and Barbara G. Ryder. 2012. User-Centric
Dependence Analysis For Identifying Malicious Mobile Apps (MOST’12).

Yu Feng, Saswat Anand, Isil Dillig, and Alex Aiken. 2014. Apposcopy: Semantics-
based detection of android malware through static analysis. In Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering. ACM, 576-587.

Jianjun Huang, Xiangyu Zhang, Lin Tan, Peng Wang, and Bin Liang. 2014. As-
Droid: Detecting Stealthy Behaviors in Android Applications by User Interface
and Program Behavior Contradiction. In Proceedings of the 36th International Con-
ference on Software Engineering (ICSE 2014). ACM, New York, NY, USA, 1036-1046.
https://doi.org/10.1145/2568225.2568301

Mederic Hurier, Guillermo Suarez-Tangil, Santanu Kumar Dash, Tegawende
F. Bissyande, Yves Le Traon, Jacques Klein, and Lorenzo Cavallaro. 2017. Euphony:

Zhiyong Shan, lulian Neamtiu, and Raina Samuel

Harmonious unification of cacophonous anti-virus vendor labels for Android
malware. In Proceedings of the 14th International Conference on Mining Software
Repositories. IEEE, 425-435.

Shuang Liang and Xiaojiang Du. 2014. Permission-combination-based scheme
for android mobile malware detection. In Communications (ICC), 2014 IEEE Inter-
national Conference on. IEEE, 2301-2306.

Alessandro Reina, Aristide Fattori, and Lorenzo Cavallaro. 2013. A system call-
centric analysis and stimulation technique to automatically reconstruct android
malware behaviors. EuroSec, April (2013).

Borja Sanz, Igor Santos, Carlos Laorden, Xabier Ugarte-Pedrero, Pablo Garcia
Bringas, and Gonzalo Alvarez. 2013. Puma: Permission usage to detect malware in
android. In International Joint Conference CISIS 12-ICEUTE " 12-SOCO’ 12 Special
Sessions. Springer, 289-298.

Borja Sanz, Igor Santos, Carlos Laorden, Xabier Ugarte-Pedrero, Javier Nieves,
Pablo G Bringas, and Gonzalo Alvarez Marafién. 2013. MAMA: manifest analysis
for malware detection in android. Cybernetics and Systems 44, 6-7 (2013), 469-488.
Andrea Saracino, Daniele Sgandurra, Gianluca Dini, and Fabio Martinelli. 2016.
Madam: Effective and efficient behavior-based android malware detection and
prevention. IEEE Transactions on Dependable and Secure Computing (2016).
Marcos Sebastian, Richard Rivera, Platon Kotzias, and Juan Caballero. 2016. Av-
class: A tool for massive malware labeling. In International Symposium on Research
in Attacks, Intrusions, and Defenses. Springer, 230-253.

Asaf Shabtai, Uri Kanonov, Yuval Elovici, Chanan Glezer, and Yael Weiss. 2012.

Andromaly: a behavioral malware detection framework for android devices.
Journal of Intelligent Information Systems 38, 1 (2012), 161-190.

Feng Shen, Justin Del Vecchio, Aziz Mohaisen, Steven Y Ko, and Lukasz Ziarek.
2017. Poster: Android Malware Detection using Multi-Flows and API Patterns.
In Proceedings of the 15th Annual International Conference on Mobile Systems,
Applications, and Services. ACM, 171-171.

Mingshen Sun, Xiaolei Li, John CS Lui, Richard TB Ma, and Zhenkai Liang. 2017.
Monet: a user-oriented behavior-based malware variants detection system for
android. IEEE Transactions on Information Forensics and Security 12, 5 (2017),
1103-1112.

Suleiman Y Yerima, Sakir Sezer, Gavin McWilliams, and Igor Muttik. 2013. A new
android malware detection approach using bayesian classification. In Advanced
Information Networking and Applications (AINA), 2013 IEEE 27th International
Conference on. IEEE, 121-128.

Cong Zheng, Shixiong Zhu, Shuaifu Dai, Guofei Gu, Xiaorui Gong, Xinhui Han,
and Wei Zou. 2012. Smartdroid: an automatic system for revealing ui-based trigger
conditions in android applications. In Proceedings of the second ACM workshop on
Security and privacy in smartphones and mobile devices. ACM, 93-104.

Min Zheng, Mingshen Sun, and John CS Lui. 2013. Droid analytics: a signature
based analytic system to collect, extract, analyze and associate android malware.
In Trust, Security and Privacy in Computing and Communications (TrustCom),
2013 12th IEEE International Conference on. IEEE, 163-171.

Yajin Zhou and Xuxian Jiang. 2012. Dissecting Android Malware: Character-
ization and Evolution. In Proceedings of the 2012 IEEE Symposium on Security
and Privacy (SP ’12). IEEE Computer Society, Washington, DC, USA, 95-109.
https://doi.org/10.1109/SP.2012.16

Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. 2012. Hey, you, get off of
my market: detecting malicious apps in official and alternative android markets..
In NDSS, Vol. 25. 50-52.

https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-android-malware-samples-every-day
https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-android-malware-samples-every-day
http://sanddroid.xjtu.edu.cn:8080
http://www.people.vcu.edu/~rashidib/Res_files/DroidCatDataset.htm
http://www.people.vcu.edu/~rashidib/Res_files/DroidCatDataset.htm
http://skylot.github.io/jadx/
http://kharon.gforge.inria.fr/index.html
http://www.offensivecomputing.net/search.cgi?search=android
http://www.offensivecomputing.net/search.cgi?search=android
https://www.virustotal.com
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
https://doi.org/10.1145/2901739.2903508
https://doi.org/10.1145/2901739.2903508
https://doi.org/10.1109/MOBILESoft.2017.2
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/2568225.2568301
https://doi.org/10.1109/SP.2012.16

	Abstract
	1 Introduction
	2 Self-hiding Behaviors
	2.1 App Objects
	2.2 Remote Communication
	2.3 System Reminders

	3 Detecting SH Behaviors
	3.1 Static Analysis
	3.2 Detection Rules
	3.3 Implementation
	3.4 Limitations

	4 Evaluation
	4.1 Effectiveness
	4.2 Efficiency

	5 Self-hiding Behavior in Benign Apps
	5.1 Hide App
	5.2 Hide Notification
	5.3 Mute Phone
	5.4 Block Message
	5.5 Block Call
	5.6 Hide Icon
	5.7 Delete Call Log
	5.8 Delete System Log

	6 Related Work
	7 Conclusion
	References

