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Abstract—Clustering is a key Machine Learning technique,
used in many high-stakes domains from medicine to self-driving
cars. Many clustering algorithms have been proposed, and these
algorithms have been implemented in many toolkits. Clustering
users assume that clustering implementations are correct, reli-
able, and for a given algorithm, interchangeable. We challenge
these assumptions. We introduce SmokeQOut, an approach and
tool that pits clustering implementations against each other (and
against themselves) while controlling for algorithm and dataset,
to find datasets where clustering outcomes differ when they
shouldn’t, and measure this difference. We ran SmokeOut on
7 clustering algorithms (3 deterministic and 4 nondeterministic)
implemented in 7 widely-used toolkits, and run in a variety
of scenarios on the Penn Machine Learning Benchmark (162
datasets). SmokeOut has revealed that clustering implementa-
tions are fragile: on a given input dataset and using a given
clustering algorithm, clustering outcomes and accuracy vary
widely between (1) successive runs of the same toolkit; (2)
different input parameters for that tool; (3) different toolkits.

Index Terms—Clustering, Machine Learning, Differential Test-
ing, Software Reliability

I. INTRODUCTION

Cluster analysis, a.k.a. Clustering, is an unsupervised learn-
ing technique used to group together entities that are related
or share similar characteristics. Clustering has many high-
stakes applications: medicine/disease prediction [1]-[3], self-
driving cars [4], criminology/criminal justice [5], finance [6],
etc. End-users that run such applications (or are affected by
decisions made with the support of such applications) should
be able to assume that the applications are reliable.

Moreover, clustering (and Machine Learning in general)
is seeing increased adoption in software products, so it is
imperative that clustering implementations be reliable. Prior
research efforts have produced many clustering algorithms,
and these algorithms have been implemented in numerous
toolkits, but prior work has not questioned or investigated
the clustering implementations’ correctness or reliability. For
example, developers use clustering implementations as “black
boxes” and might over-optimistically assume that algorithms’
implementations are correct, accurate, and generally reliable.
However, even specifying clustering correctness remains a
challenge, which complicates validating or verifying clustering
implementations. We are not aware of any study that has
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Fig. 1. Expectation Maximization: Accuracy Distributions for 4 Toolkits On
Dataset dermatology.

questioned the reliability of clustering implementations, or tool
for testing such aspects.

Example: clustering accuracy in dermatology. Consider
the dermatology dataset [7] used for ‘“differential diagnosis
of erythemato-squamous [skin] diseases”. Giivenir et al. [8]
have used this dataset to construct a classification approach
for diagnosing new patients; they explicitly state “The main
requirement for such a system is prediction accuracy”. We
set the algorithm to the widely used (and in our experiments,
the most accurate across-the-board) Expectation Maximization
algorithm, and ran 4 different toolkits implementing the algo-
rithm (TensorFlow, Weka, Matlab, SKLearn) to cluster this
dataset; each toolkit was run 30 times. In Figure 1 we show
toolkits’ accuracy distributions. We make two observations:
(1) there are wide variations across runs for the same toolkit,
e.g., from 0.1 to 0.7 for TensorFlow; (2) all of SKLearn’s runs,
including its “best” runs at 0.35 accuracy, are worse than any
of Matlab or Weka’s runs, whose minimum accuracies were
0.41 and 0.52, respectively. Note that, while variation across
runs is expected for nondeterministic algorithms, consistently
poor performance is problematic.

Therefore, there is a need for reliable clustering imple-
mentations. Users, from life science researchers to software
engineers should be able to (reasonably) assume that clustering
implementations are reliable and interchangeable, i.e., for a
given algorithm, its implementation is correct and has no
negative impact on the clustering outcome.



We introduce SmokeOut,! a tool that leverages the wide
availability of clustering implementations and datasets with
ground truth to test clustering implementations (while control-
ling for datasets and algorithms). Crucially, SmokeOut does
not require an explicit specification associated with an imple-
mentation. SmokeOut uses a suite of differential clusterings
coupled with a statistics-driven approach to help developers
measure the determinism and accuracy (absolute, as well as
relative to other toolkits) of a given implementation. Section II
describes SmokeOut’s architecture.

In Section III we describe the setup. SmokeOut’s input
consisted of 162 datasets from the Penn Machine Learning
Benchmark (described in Section III-A). To measure accuracy,
we use the Adjusted Rand Index (ARI), ranging from —1
(worst, or lowest accuracy) to +1 (best, or highest accuracy);
note that ARI = 0 corresponds to “independent” clusterings
when comparing toolkits or roughly random clustering when
comparing to Ground Truth; ARI details are in Section III-B.

We chose 7 widely-used clustering toolkits: MATLAB,
mlpack, R, Scikit-learn, Shogun, TensorFlow, WEKA (Sec-
tion III-C). However, some algorithms are not implemented
by all 7 toolkits: in total, we have 27 algorithm/toolkit com-
binations. We analyzed 7 widely-used clustering algorithms,
described in Section III-D. Of these, 3 are deterministic:
Hierarchical clustering - agglomerative, Affinity Propagation,
and DBSCAN. The other 4 are nondeterministic: K-means and
its K-means++ variant, Spectral Clustering, and Expectation-
Maximization (Gaussian Mixture).

To characterize clustering outcomes and present the results
in an intuitive way, we introduce a concise, yet effective and
statistically rigorous, 5-label system that captures distribution
shapes (Section IV).

Section V presents the SmokeOut results. We now present
a few highlights for our findings:

Deterministic algorithms have non deterministic im-
plementation across toolkits. Hierarchical clustering is a
completely deterministic procedure and there should be no
variation in the results obtained by a given implementation
for a fixed dataset. However, SmokeOut has revealed toolkits
disagreements where there should be no disagreement.

Non-deterministic algorithms have a wide range of out-
comes: the variations across toolkits and variation across
runs can be severe. While variation across runs is expected for
nondeterministic algorithms, consistently poor performance is
problematic. Many toolkits achieve ARI = 1, while some
toolkits’ best runs are around O (i.e., random).

Different implementations of the same algorithm cluster
points differently. Note that similar accuracy does not imply
similar clusters; toolkits often disagree on cluster composition.

II. SMOKEOUT ARCHITECTURE
Figure 2 shows SmokeOut’s architecture. Let C'T"T" be a new
“Clustering Toolkit under Test” (bottom left of the figure), that
is, an implementation of a specific clustering algorithm. C'T'T
is tested as follows:

'https://github.com/v-m/SmokeOut
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Fig. 2. SmokeOut architecture.
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1) CTT is run multiple times on the same dataset to gauge
(potential) non-determinism. For this we run statistical
analyses on the accuracy distributions.

2) CTT’s accuracy distributions are compared with
other implementations of C'I"I"s algorithm (“Clustering
Toolkit 17 ... “Clustering Toolkit N*); which allows us to
measure C'T"1"s relative accuracy, or compare accuracy
when ground truth is not available (e.g., via measures
such as objective or silhouette).

III. SETUP

Clustering is defined as follows. Given a set S of n points
(d-dimensional vectors in the R¢ space), the objective of
clustering is to partition S into K non-overlapping subsets
(clusters) Si,...,S5;,...,SKk such that intra-cluster distance
between points (that is, within individual S;’s) is minimized.

A. Datasets

Appropriate datasets are crucial when benchmarking Ma-
chine Learning implementations. To that end, we chose PMLB
(Penn Machine Learning Benchmark) [9], a benchmark suite
carefully designed to include representative datasets, suitable
for evaluating ML implementations.”> PMLB is a collection of
166 datasets, of which we used 162; we excluded connect-4,
poker, mnist, and kddcup due to their excessive size — running
these hundred of times would be prohibitive.

The following table contains descriptive statistics: datasets
have, on average, 809 instances (points to be clustered) and the
mean number of features (number of attributes, or dimensions
d) is 15. PMLB comes with Ground Truth, which allows us to
measure clustering accuracy. About half the datasets have two
clusters (K = 2), while for the rest we have 3 < K < 26.

Min Max |Geometric Mean
Instances 32 | 105,908 809.25
Features (attributes) 2 1,000 15.41
K (# of clusters) 2 26 3.18

2PMLB was specifically designed to, among others, avoid pitfalls of
other publicly available datasets as well as to “compare and contrast ML
methods” [9].



TABLE I
CATEGORIES FOR THE PMLB DATASETS.
Category Percentage
Medical/Health 24%
Biology, Biochemistry, Bioinformatics 15%
Physics, Math, Astronomy 11%
Social, Census 10%
Sports 7%
Financial 7%
Image recognition 6%
Synthetic datasets 6%
IT, Al 4%
Linguistics 3%
Miscellaneous 7%

We categorized the nature of each dataset and present the
category breakdown in Table I. We point out several things:
the datasets are quite representative, as they cover a wide
range of domains, from scientific to social to financial; medical
data (discussed next) has the highest proportion, 24%; and the
presence of synthetic datasets, 6%, to increase the variety of
data density distributions.

To illustrate the need for clustering reliability, we note that
38 of the real-world datasets in PMLB are clustering tasks
from the medical/health domain, e.g., contain patient data
and outcomes. For example, four datasets are dedicated to
breast cancer; three are focused on heart disease; other datasets
involve predicting diabetes, hypothyroidism, appendicitis, etc.
B. Measuring Accuracy

The adjusted Rand index (ARI), introduced by Hubert and
Arabie [10] is an effective and intuitive measure of clustering
outcomes: it allows two different partitioning schemes of an
underlying set D to be compared. Multiple surveys and com-
parisons of clustering metrics have shown that ARI is the most
widely used [11], most effective, as well as very sensitive [12].
Concretely, assuming two clusterings (partitionings) U and V'
of S, the ARI measures how similar U and V are. The ARI
varies between —1 and +1, where ARI = +1 indicates per-
fect agreement, ARI = 0 corresponds to independent/random

clustering, and ARI = —1 indicates “perfect disagreement”,
that is, completely opposite assignment.
C. Toolkits

We chose 7 widely-used ML toolkits: MATLAB, mlpack,
R, Scikit-learn,> Shogun, TensorFlow, WEKA. The popularity
of these toolkits is apparent in many ways: multi-million user
bases, e.g., MATLAB and R*; TensorFlow’s 1,600+ GitHub
contributors [15] or the abundance of S&P 500 companies that
use TensorFlow [16]; Scikit-learn is used by popular services
such as Spotify, Evernote, or Booking.com [17]; and so on.

D. Algorithms
We chose 3 deterministic clustering algorithms: Hierarchical
clustering (“agglomerative” variant), DBSCAN,> and Affinity

3Scikit-learn and R use “Gaussian kernel” density by default. In addition,
Scikit-learn can also use k-nearest neighbors, a faster scheme, hence we use
the term “SKlearnFast” to refer to this implementation. We use the term
“SKlearn0T” to denote Scikit-learn’s zero-tolerance configuration.

4MATLAB: more than 3 million users in 2017 [13]. R: over 2 million users
in 2014 [14].

SWhile in rare scenarios DBSCAN could be “mildly” nondeterministic due
to input order, we used a fixed input order to ensure determinism.

Propagation. For a given dataset, the clustering outcomes for
these algorithms are not supposed to vary across rumns, or
across toolkits.

We chose 4 nondeterministic algorithms: K-means and
its K-means++ variant; Spectral Clustering, and Expectation-
Maximization (Gaussian Mixture). The clustering outcomes
for these algorithms are expected to vary across runs or
toolkits, but consistently poor performance is problematic.

IV. DISTRIBUTION SHAPES

Since clustering implementations are used as “black boxes”,
we want to give users an idea of what to expect from a
certain toolkit or algorithm: will clustering performance be
consistently good? will it be consistently bad? will it be mostly
good with an occasional “bad” run? will it be mostly bad with
an occasional “good” run? will it be good for half the runs,
and bad for the other half?

There are many statistical parameters that characterize a
distribution, but no single parameter to give us the answers
to the previous questions. To this end, we introduce a simple,
concise, five-label system that can succinctly characterize a
distribution along the lines drawn above. The labels capture
distribution shapes (Figure 3) and are defined as follows:

R, which stands for outliers to the Right of the distri-
bution; that is, clustering accuracy can sometimes be
high; put prosaically, some runs are “good”.

L, which stands for outliers to the Left of the distribu-
tion; that is, clustering accuracy can sometimes be
low; put prosaically, some runs are “bad”.

LR, when both good and bad outliers exist.
B, i.e., Bimodality — the distribution is bimodal, where
a set of values is low and one is high.
U, aka Uniform values — no outliers.
V. RESULTS

A. SmokeOut Methodology

SmokeOut was run 30 times for each algorithm, so we
can draw meaningful statistical conclusions; we used default
settings for all toolkits. In all, across all algorithms and
toolkits, there were 152,276 runs. We use the following format:
for each of these 30 runs, we obtain 30 clustering outcomes.
We compare these clusterings against Ground Truth, and
measure the ARI. Next, we characterize the ARI distribution
by indicating the min value, the max value, and the shape
(that is, one of B, R, L, LR, U). Let us take the first row of
Table II as an example, where K-means was run on dataset
collins using SKlearn, R, MLpack, MATLAB, Shogun and
TensorFlow. For SKlearn, across the 30 runs, we observed
a minimum accuracy of 0.54, a maximum accuracy of 0.7,
and the distribution shape is LR (both left and right outliers).
That is, the expected accuracy is in the interval [0.54, 0.7], with
both left and right outliers possible. The next row, confidence,
however, has a bimodal distribution with minimum 0.36 and
maximum 0.71 hence running the toolkit repeatedly will yield
accuracy values either in the neighborhood of 0.36 or in
the neighborhood of 0.71, i.e., a 2x variation from run to
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Fig. 3. Distribution shapes and their corresponding labels; the red dotted vertical line indicates the median while the yellow dotted line is the mean.
TABLE I
K-MEANS: VARIATION DUE TO STARTING POINTS
Dataset SKlearn R R100iter MLpack Matlab Shogun TensorFlow T.A.
2 ) 2 g g 2 g s
= 5 B S B S R S B s B S B S B
NI HNH I HHEIHHEEHHEIHEE I HEIE A HE
collins 54| 70| LR 56| 65| B 54| 70| LR 541 70| LR 54| 70| LR .54 70| LR 54| 70| LR 500 ALL
confidence 36| 71| B || 36 71| B || 36| 71| B || 36| 71| B || 36| 1| B | 36| 71| B || 36| 71| B || 30| ALL
corral 0] 38] B 0] 38] B 0] .38] B ||-.01] 38] B 0] 38] B 0] 38] B 0] .38] B [-.08] ALL
ecoli A7 770 B || 47| 69| B || 47[ 70| B || 47| 70| B | A7 70| B | 47 70| B || 47| ;70| B || 51| ALL
house-votes-84 -02[ 54 B || 52| 54| U [[-02] 54] B |[-02] 54] B [[-02] 54| B [[-02] 54| B [[-02] 54| B 0] ALL
iris 41] 73] B 41] 78] B 41] 73] B 41] 73] B 41] 73] B 41] 73] B 41] 73] B 41] ALL
mfeat-karhunen 48| 76| LR || 47] 76] R || 48] .76] LR || 48] .76] LR || 48] .76] LR || 48] 76| LR || 48] .76] LR || 42| ALL
mfeat-pixel 50] 78] LR || .51] 78] LR .50] 78] LR || 50| .78| LR 500 78] LR || 50| 78] LR || .50 .78| LR || 41| MT/R
monk3 .09] 39| B .09 39| B .09] 39| B .09 39| B .09] 39| B .09 39| B .09 39] B |[-.01| ALL
mushroom 0] 37| B 0] 37 B 0] 371 B 0] 37 B 0] 37| L 0] 37| L 0] .37] L [-01] ALL
new-thyroid 16| .60| B 21| .60] B 16| 60| B 16| .60| B .16 .60| B .16 .60| B .16 .60| B 141 ALL
optdigits ST 75 LR || 52 75| LR || 57| 67| B || .57 75| LR || .57 75| LR || .57| 75| LR || .57] 75| LR || .55] MT/R/RI/S/SH/T
promoters 1 11 U 1 1| U 1 1| U 1 1| U 1 1| U 1 11 U 1 1| U 1| ALL
shuttle 7] 45 B || 3] 45| LR || 24| 45| B || 24| 45| B || 24| 45| B || 24| 45| B || 24| 45 B | .I9] MI/R/RI/SH/T
solar-flare_1 .08] 45| LR || .08] 45| LR || .08] 45| LR || .08| 45| LR .08] 45| LR || .08] 45| LR || .08] 45| LR || .19] ALL
solar-flare_2 12| 54| LR || .12] 54| LR || .12 54| LR || .12| .57| LR || .12] 54| LR || .12] 54| LR || .12] 54| LR || 24| ALL
waveform-40 25| 46| B 250 25| U 250 251 U 25| 46| B 25| 46| B 25| 46| B 25| 46| B 37| ALL
soybean 29| 49 LR || 29| 44| B || 29[ 49| B || 29| 49| LR || 29| 49| LR | .29] 49| LR || .29] 49| LR || 47| ALL
satimage 28] 52| B .30 53] B 28] 52| B 28] 52| B 28| 52| B 28] 52| B 28| 52| B 38| MP/MT/R/R1/SH/T
pendigits 48[ 62] B || 47[ 62] B || 48[ 62| B || 48[ .62] B | 48] 62] B | 48] 62| B || 48] .62 B | .52| MI/R/RI/S/SH/T
mofn-3-7-10 -06| .38] B |[-06] 38] B ||-06] .37] B ||-.06] 38] B |[-.06] 38] B |[-.06] .38] B |[-.06] .38] B |/-.04] ALL
mfeat-pixel 50| 78] LR || 51| 78] LR || .50] .78] LR || .50| .78] LR || .50] .78] LR || .50| .78] LR || 50| .78| LR || 41| MT/R
led7 31] 49] LR || .31] .50] LR 23] 49| LR || 23] 49| LR 22| 491 LR || 31| 49| LR || .22] 49| LR || .23] MP/MT/R1/S/SH/T
haberman -0I[-01| U [[-0I] 01| U [[-0I|-01] U [[-0I] .17 B |[-0L|-0I| U [[-0I|-0I] U [[-0I[-0I] U [[-0I] ALL
flags -01] .15] B 0| .11{ LR ||-01| 35 B |[-.02| .15] B |/-01| .15 B |[-.01] .15 B |[[-.01] .I15] B [[-.04] MP/MT
dna 32| 45| B 24| 47] LR || 33| 45| B 32| 45| B 32| 45| B 32| 45| B 32| 45| B 54| MT/R
balance-scale 04| 29[ LR || .04] 29| LR || .04] 29| LR || .04| 33[ LR || .04] 29| LR || .04] 29| LR || .04] 29| LR [[-0I] ALL
[ Median [ 28] 52] [ 29 53] [ 25] 32] | 5] 32] [ 5] 32| [ 28] 32] [ .25] 32| [ .30] I
[ Geometric Mean || 25| 52| || .27 51 | .25] 52| || 25| 53] | 25| 52| || 25| .52] || .25] 52| | .26] I
[ Median (all) [ -01] -07] [ -0I] -07] [ -01] -07] [ -0I] -.07] [ -0I] .07] [ -01] -07] [ -0I] -07] [ -30] I
[ Geometric Mean (all) || .09] .16] || .09] .16] | .09] .16] _ [ .09] .07] || .09] .16] || .09] .16] || .09] .16] | .26] I

run! Note that the numbers discussed so far compare the
clustering outcome against Ground Truth. The final set of
columns, “T.A.” (toolkit agreement),6 indicates the ARI when
comparing toolkits against each other; in other words, we
want to know if toolkits agree with each other (though they
might disagree with Ground Truth). This is computed pairwise,
toolkit vs. toolkit, hence we have 30 x 30 = 900 comparisons
per toolkit pair. Based on these comparisons, we compute the
ARI and indicate the minimum ARIs, as well as the toolkit
combinations’ exhibiting that minimum. Referring again to the
first row, collins, we see the minimum cross-toolkit agreement,
ARI = 0.50 (attained by ALL toolkit combinations).

Finally, each table has three sets of rows: 25 “regular”
rows on top where we show results for the top-25 highest
accuracy for that algorithm. The Median and Geometric Mean

6 Assuming two clusterings U and V produced by two toolkits imple-
menting the same algorithm and on the same input, equal accuracies, i.e.,
ARIF ARI7, do not imply that U and V' are equivalent up to a
permutation. For example, even for K-means and Hierarchical where different
toolkits have similar accuracy ranges, the toolkits still disagree on cluster
composition.

TFor space reasons, in the last column we use the abbreviations: ‘MT’ for
MATLAB, ‘T’ for TensorFlow, ‘W’ for WEKA, ‘S’ for SKlearn, ‘SO’ for
SKlearnOt, ‘R1’ for R100iter, ‘SH’ for Shogun, and ‘MP’ for MLpack.

are computed over the 25 datasets shown in the table. The
last two rows, Median (all) and Geometric Mean (all), are
computed over all 162 datasets.

B. K-means with Varying Starting Points

The K-means algorithm requires “starting points”, that is,
initial cluster centers — with different starting points, the
algorithm may converge to different minima. We explored the
variation in outcome by randomly picking different starting
points from the dataset to compare difference between toolKkits.

Specifically, in each run we pick K (according the number
of clusters in the dataset) points from the datasets and use them
as initial centroids (cluster centers). We ran R in the default
configuration (the ‘R’ grouped columns) as well as 100-
iterations configuration (‘R100iter’ grouped columns) because
by default R stops iterations early. Table II shows the results;
we now proceed to discuss the results.

A bad choice of starting point can be worse than random.
Note the fifth row, house-votes-84: all toolkits except R have
a minimum value of -0.02 (recall that ARI = 0 corresponds
to random clustering); moreover, these toolkits’ distributions
are bimodal (marked with B) meaning the minimum is not an
outlier (which would be marked as L).



TABLE III

K-MEANS++
Dataset SKlearn R R100iter MLpack Matlab Weka Shogun TensorFlow TA.
v ¥ Y ¥ ¥ ¥ ¥ ¥
S8l Sllsl&l el flsle|l Sllelslsllels Sl gllelsl §Elsls
S|IS|g ||=|=S|g S |s|g || |=s|ag|=|=s|lg||l=|=sg|==s|g|=|=|a|=|=
collins 56| .65 B S5 .65 B S7] 65| B 54| .70 B .65 .70 U 27| 38| LR 50| .70] LR 49| .64| LR 20| MP/W
confidence 58] 58] U || 58] 65| B || 58] 61| U || 36] 71| B || 57| .69] B || 39] 71| LR || 35| 71| B || 36| 71| LR || .05| MP/T
corral 13| 31] B |[-01] 31| B || .13] 31| B [[-01| 31| B || .13| .18] B ||-01| 37| B |[-01| 34| B [|-01| 38| B |[-09] MP/SH/W
ecoli 46| 53| B || 46| 53| B || 47| 53| B || 42| 70| B || 68| 70| U || 44| 72| B || 42| 70| B || 44| 72| B || 43| MP/W
house-votes-84 54| 54| U || 54| 54| U || 54| 54| U || 01| 54| B || 54| 54| U |[-02| 54| B [[-02| 54| B ||-02| 54| B ||-01| MP/SH/T/W
iris 73] 73] U |[ 73] 73] U |[ 73] 73] U || 41| 73] B || 73| 73] U || 42| 71| B || 41| 73] B || 71| 73] U || 42| MP/SH/W
mfeat-karhunen 56| .76/ LR 55| .70/ LR 56| 75| LR 50| .70/ LR 55| .66 B 45| .64] LR 50( .75| LR 51| .74 B 35| MP/W
mfeat-pixel 55| 69] B || 56| .69] B || .56] 75| LR || 48] .67] LR || .57| .61] U || 49| .69] LR || 49| 75| LR || 52| 72| B || 41| MP/W
monk3 09 09] U |[.09] .09] U |[.09] .09] U [[-01| 39| B || .07] .09] U [[-01| 23] B [[-01| 39| B || .01] .09] B ||-01| SH/T
mushroom 1] 11| U || 11 11| U |[ 11| 11| U 0] 11| B [ .05 .11] B || 0] 23| B 0] 11| B 0] 37| B |[-07] TIW
new-thyroid 24 62] B || 57] 59| U | 57] 59| U || .16] .60] B || .16] 59| B || 43| .62] B || .16] .59| B || .16] 62| B || .13] MP/MT/SH/T/W
optdigits 66| 67] U || 67| .67] U || 67| .67] U || 52| 75| B || 59| .67] B || 50| .76] LR || 57| .75| LR || 57| .75| LR || 44| SH/W
promoters 1 1] U 1 1] U 1 1| U 1 1] U 1 11 U |[-.01] 40| B 1 1| U 1 1| U -.01| ALL
shuttle 0] 0] U [[ 25| 27] U || .16] 32| LR || 14| 37| LR || 0] 26] B || .18| 27| B || 24| 41| B 0] 45| B |[-01] MP/T
solar-flare_1 26 44] B || 25| 28] U || 25| 45| B || 07| 33| B || 22| 25| U || 03| .17| LR || .07| 45| LR || .06] 45| LR ||-01| SH/W
solar-flare_2 33| 56| LR || 25| .57] LR || .12] .55 LR || .10] 48] LR || .I5| 28] B || 07| .16] LR || .09] .55| LR || .13] .57| B || 04| SH/W
vote 57] 58] U || 58] 58] U || 58] .58] U 0] 58] B || 57] 58] U || 57] 58] U || 57] 58] U || 57] .58] U [ -01] MP/S/SH/T/W
spambase 03] 03] U || 03] 03] U | .03] 03] U || .03 03] U || .03] 03] U |[-03] 35| B || .03] 03] U 0] 03] U |[-06] ALL
dermatology 02 02] U |[ 02| 02| U |[.02] 02| U || .01 .06] U || .01] 06| U || 31| 91| B || .0I| 08| B || 01| 06] B ||-02] MP/W
orx 0] 0] U 0] 0] U 0] 0] U 0] 0] U 0] 0| U] 0] 50 B 0] 0] U 0] 0] U [[-01] MPMT/S/SH/T/W
credita 0] 0] U 0] 0] U 0] 0] U 0] 0] U 0] 0] U |[-01] 50| B 0] 0| U 0] 0] U |[-01| MP/S/SH/T/W
buggyCrx 0] 0] U 0] 0] U 0] 0] U 0] 0] U 0] 0] U 0] 50| B 0] 0] U 0] 0] U [[-01] MP/MT/S/SH/T/W
australian 0] 0] U 0] 0] U 0] 0] U 0] 0] U 0] 0] U |[-01] 50| B 0] 0] U 0] 0] U [[-01] MPMT/SH/T/W
appendicitis 31 33| U || 31| 31] U || 31| 31| U [[-06] 37] B || 29] 29] U [[-06] 37| B || 29| 37| B || 29| 37| B || .07] MP/SH/T/W
[ Median [ 28] 48] [ .28] 42| || 28] 49 [ .03] 44] [ .19] 28] [ .05] 50| || .12] #9] [ .10] .50] _ [-.01] I
[ Geomeiric Mean 290 35 [ 3] 36] || 311 371 | 17[ 39 | .28] 34| | .I6] 48 21 41 |21 41 | .08] I
[ Median (all) [.02] 05 [ .02] 05] [ .03[.05] [ .01[.06] [ .02] .05 [ O].15] [ .0I].07] [ .0I[.07]  [-01] I
[ Geomerric Mean (all) || 12| 14| || 12| 04| || 12| 14| | .08 15| | .01| .14] | .08 20 || .09 6] | .09] .16] | .08] I
. TABLE IV
MAX performance (best case). No toolkit outperforms HIER ARCHICAL
consistently. For example, on dataset flags, all toolkits except Dataset SKiearn R Matlab TA.
R100iter have max accuracy of 0.11-0.15. However, R100iter sl sl 8lslsl$llslsldlsls
. . . S = S = || & = || 8| X
achieves three times better accuracy: .35! For haberman, with Sl T R R
. . Hill_Valley_with_noise 0 0o U 0 0| U 0 0ol U 1| ALL
the exception of MLpack, all toolkits’ max hovers around 0; analcatdata_germmangss [ 0T 0T[ U || 01[ 01 U [ 01 01| U [ T ALL
hence, except MLpack, all toolkits’ top performance is close | balancescale A6]16] U | 171 17} U Il .12} 12 U |} 29] MI/S
vote 491 49| U 491 49| U 491 49| U 1| ALL
to random. breast-cancer-wisconsin 28] 28] U 28] 28] U 28] 28] U 1| ALL
analcatdata_aids -02(-.02| U |[-02]-.02| U [|-.02|-.02] U 1| ALL
MIN performance (worst case). house-votes-84 shows the ome i or U 03 03 T ol ol U461 RIS
danger of local minima: all toolkits, except R, have mins of | analcaidawa happiness [ 10| .10] U J| .10[ .10} U | .10} .10[ U || 1] ALL
. . . backache ~01[-01] U [[-01]-01] U [[-01[-01] U || 1] ALL
-0.02 (worse than random). Occasionally, these toolkits will buggyCrx 0] 0 U] 0 0 U] 0 0]U 1] ALL
: : analcatdata_japansolvent 0 0] U 0 0] U 0] 0] U 1| ALL
achieve high accuracy. However, R users are much better e T ol 1] My B CA | Wy oy
“protected”: their min is essentially the same as their max ionosphere A8[ 18] U || 18] 18] U [| .I8] .1I8] U || 1| ALL
. car 0] 0] U] 0] 0] U ||-01]-01] U | .17] MTR
(.52 min, .54 max). solar-flare_I 25 25| U || 25| 25| U || 24| 24| U || 61| RS
- sl pima 10| .10] U || .10[ .10] U || .10] .10] U || 1| ALL
Insté'lbl!lty, as reYealed by distribution shapes. Recall R s e T e s
that U indicates “predictable” performance. However, the table allhypo 02 02] U [[ 02[ 02[ U [[ .02[ 02] U 1] ALL
. . . tic-tac-toe 0] 0] U 0] 0] U |-02[-02] U |[-08] MTR
shows the abundance of bimodality and outlier-prone out- pendigits 557551 U 1550 550 U [ 550 550 U 1T 99 ALL
; ; waveform-21 31 31] U || 31] 31] U || 31| 31] U || 1| ALL
Come§’ ie, B, L, R, LR. The last rOW shows the median values analcatdata_asbestos AL 1] U [ 11| 1o U || .11] 11 u 1| ALL
for min- and max- accuracy, respectively. Notice how accuracy fags 02[ 02| U || .02] 02] U || 03] 03| U || 97| ALL
. S soybean 40| 40| U || 38 38| U || 38| 38| U || 82| MT/S
can vary from .25-.29 (min) to .52-.53 (max), indicating a analcatdata_authorship || .76 .76] U || .77 77| U || 77| 77| U || 94| ALL
large degree of instability. [ Median 70l J0] [ .J0[ .J0] [ .10 10] [ 1] I
| Geometric Mean [[ -20] 20] [[-20] .20] [[.19] .19] I -79] I
C. K-means++ [ Median (all) [04[.04] .037.03[ [[.02[.02] T T |
‘ Geometric Mean (all) H Jj" A13‘ H ,]3‘ AIJ" H .12‘ JZ‘ H A72‘ H

Table III shows the clustering outcomes when running
K-means with starting points generated according the K-
means++ initialization algorithm. However, for K-means++
we do not control how the starting points are chosen, as K-
means++ is supposed to improve upon K-means with a better
initialization. We now discuss the findings.

No real improvement compared to random starting
points. Despite the fact that K-means++ was devised to im-
prove upon K -means, in our experiments K -means++ does not
achieve higher accuracy compared with the random starting
points (Section V-B). Indeed, in the last rows, showing the
median values for min- and max- accuracy, respectively, we

observe that we are around the same values: .22-.31 to .29-
.54. However, there is an improvement in terms of stability —
comparing the shape labels in Table II and Table III we see
more stability (more U’s).

Weka differs from the other toolkits. When using
K-means++, we were able to add Weka to our study (Weka
does not permit specifying starting points hence its absence
from Section V-B). Weka has interesting behavior, markedly
different from the other toolkits. For example, if we look at
credit-a through australian datasets (lower half of the table) we
can see that no algorithm can break 0 (they achieve 0 min/max



TABLE V

EM/GAUSSIAN
Dataset SKlearn SKlearn0T Matlab Weka TensorFlow T.A.
R : $ : : <l
= s = S B S R S = S B
NI HN I HEHEIHHEIHEEIHE
pron_crabs 0] 0] U .02] .02] U [-01] 97] B [[-01]-01] U [-.01 1| B [[-02] MT/T
analcatdata_creditscore 04| 26| B -05| 26| B -03] 95| B 0 0ol U -03| 25| B -.08| S/SO/T
twonorm 90| 90| U 90[ 90| U 0] 91] B 91| 91] U [[-01] 90] B [[-.05] MT/T
analcatdata_authorship 59| 90| LR || .50 90| LR || .04] .79] LR || 95| 95| U |[|-.01| 41| B [[-.09] MT/T
wdbc 81 81| U 81 81| U 0| .75 B 67| .67 U .03] 76| B -0l MT/T
breast-cancer-wisconsin || .81] .81| U 81| 81] U 0] .72 B .67] 67| U .03] .76] B |[-.01| MT/T
ionosphere 39] 40| U 39| 40| U .02| 43| B 251 25| U 0| .77 B |/-.04| MT/T
wine-recognition 45| 60| B 44| 61| B 32| 94| B 91| 91] U .02] 49| B [[-.06] MT/T
breast -01] .70 B [[-.01] .70] B [|-.01| .58 B 76| 76| U 48| 67| B |[|-.01] MT/S/SO/W
dermatology .08] 35| B .02] 36| B 41] 84| B 52| 82] B 1] .65] LR [[-.06] MT/T
new-thyroid 86| .86] U 86| 86| U 41| 90| B 89| 89| U 40| 86| LR || .24| MT/T
vote 47| 54| B 47] 54| B 0] .62| B 47| 57| B -03] 45| B -.03] MT/T
iris 90| 90| U 90 90| U 56| 56] U 75| 75] U 51 90| B 50| T/IW
house-votes-84 02| 49| B -02| 49| B -.03] .56 B S51 551 U -02| 57| B -.05] MT/T
biomed 18| 54| B 18] 57] B 01| 55| B 54| 54| U 0] 57] B |[[-.02] MT/T
dna 26| .50 LR || .33] 49] B [[-.02| .10] LR || .30| .72] B |[[-.03] .01| U [[-.03] T/W
waveform-40 25| 25| U 53] 53] U 25| 56| B 25| 25| U 0] 53] B [[-.03] MT/T
ecoli 27| 61| B 25| 61| B 0] 0] U 34| 73] B 53] 75| B 0] ALL
confidence 32| 60| B 32] 67] B 30 .66] LR || .57] .75] B 35] 62| B 27| SO/T
promoters 1 1| U 1 1| U [[-01|] 25| B 45| 62] B [[-01] .03] U [[-.05] MT/T
optdigits 41| 57| B 36| .61| LR 45| .66] LR 22| 61| B 29| 53] LR 121 T/IW
waveform-21 25| 25| U 57] 57 U 15| 58] B 25| 25| U 15[ 57] B .06] MT/T
splice .02| 35| B .02] 36| B [-.02] 26/ B 23| 34| LR [[-.03] 49| B [[-.07| MT/T
mushroom 0] .I2] B 0] 38] B |[-.01] 45| B .07 .07] U [-01] 49] B [[-.10] MT/T
shuttle .04| 23] B .03] 20| B 03| 50| B 19| 32| B .08] 27| B .01| S/SO
[ Median [ -29] .55] [[-37] .59] [ 0] 58] [[ .46] .62] [ 0] .57] [--03] I
| Geometric Mean [ .35] .54 [ 37] .38] [ .09] .57 [ 44] 53] [ .09] 53] [ .or] i
[ Median (all) [[ .01 .10] [[ 01T .09] [ 0] .16] [[ 03] .10] [[-01] .16] [--02] i
|_Geometric Mean (all) || .10] .18] [ 11] 18] || .04] .21] [ 73] 18] [ .03] .22] | .o1] i

with a uniform distribution) whereas Weka has a bimodal
distribution with accuracies of up to 0.5. Unfortunately, for the
“easy” promoters set where all algorithms achieve a 1 score,
Weka can only manage between 0.1 and 0.41.

Similarly, the agreement columns show that Weka has, in
some cases, minimum agreement with other toolkits (e.g.,
solar-flare_1, but it is never present when agreeing with the
maximum values. Even worse, on a large number of cases
(not shown due to space limits), all toolkits report a 100%
agreement with each other except with Weka!

We reached out to WEKA developers who suggested that
we change WEKA'’s default configuration (turn normalization
off) to improve its performance on this particular dataset [18].
While turning off normalization improved the performance on
this dataset. we believe it is important for uniformity to run
all toolkits with default parameters, as per-dataset tweaking
might affect behavior negatively for other datasets.

MAX performance (best case). Similarly to K-means with
random starting points, for K-means++ no toolkit outperforms
consistently. For example, on monk3, Shogun and MLPack
have a maximum accuracy of 0.39 where other algorithms do
not get higher than 0.09 (with the exception of Weka which
have a maximum score of 0.23), that is four times lower!

MIN performance (worst case). The minimum shows that
even if considering using a specific algorithm for drawing
our starting points, the difference min/max can be important.
MLPack seems to be really sensitive as its min/max can range
greatly. A clear examples is solare_flare_2 with a minimum of
0.1 where the maximum was 0.49; similarly for vote where
minimum is 0.01 and maximum is 0.59.

D. Hierarchical/Agglomerative
Table IV shows the results obtained with the hierarchical
(agglomerative) clustering.

Deterministic runs. Unlike the previous algorithms, hierar-
chical is deterministic, hence we expect no variation between
runs. Indeed we find that for a given toolkit, distribution is
uniform (all U’s).

Difference across toolkits. What is concerning however,
is the difference between toolkits, e.g., on sets house-votes-
84 (max is .59 for SKLearn, .67 for R, .33 for Matlab) or
balance-scale (max’s were .16, .17, and .12 respectively). For
a deterministic algorithm there should be no such variation.

Toolkit (dis)agreement. Excepting some specific cases, all
toolkits agree on their outcome as we have a large number
of 1 as minimum values. A few datasets however show
some disagreement, e.g., car and solar-flare_1. However, for a
deterministic algorithm, there should be no such disagreement.

We emphasize that finding the root causes of these deter-
minism violation is orthogonal to this paper, and a direction
we leave to future work.

E. EM/Gaussian

Table V shows the results on Gaussian mixture.

MAX performance (best case). This algorithm stands out
in that multiple toolkits achieve max performance of 0.9 or
higher (Matlab, for instance, does so on four datasets, while
SKlearn and Weka do so on three!).

MIN performance (worst case). house-vote-84 poses dif-
ficulties for all toolkits (minimum is around -0.03 to -0.01)
except Weka, which achieves a minimum of 0.56!

The tolerance parameter from SKlearn has limited impact on
results. Only for waveform-40, SKlearn with default tolerance
attains a 0.25 max, whereas SKlearnOt attains double the
accuracy (0.53).

Overall, best performance. EM/Gaussian is the only algo-
rithm where multiple toolkits (Matlab and TensorFlow) exceed
a 0.2 geometric mean across the 162 datasets.



TABLE VI TABLE VII
SPECTRAL CLUSTERING DBSCAN
Dataset SKlearn SKlearnFast R T.A. Dataset SKlearn R MLPack T.A.
2|8 £ S| & § ] § 2| & g & 2 g 2 S
HEHEIHHEIHEHEIHEREIE SRR EEIE A EIE IR R
T SCRRLCTRRRS ) T KT TS analcatdata_crediscore || 0] 95] B || 0] 95] B || 0] 95] B [-06] ALL
dermatology 01 01| U || .17] .17] U || 47] 86| LR [|-04] R/S || .18 R/SF breast-w -07] 771 B ||-07] .77 B [|-07] 77| B ]|-34] ALL
breast-cancer-wisconsin ||-01| 0] U || 41| 41| U 0] 53] B 01| R/S 18| R/SF new-thyroid -20] .69] B [[-20] 69] B [-21] .69] B [-26] ALL
wdbc -01] 32] B 41] 411 U .02] 53] B 01| R/S 43| RIS ionosphere 0| .65| B 0| .65 B 0| .66| B -.12| ALL
analcatdata_lawsuit -.07 0| B 03] .03] U 31| .69] B 08| R/S .05| R/ISE collins 0] .63] B 0| .63] B 0] .63 B -.08| ALL
analcatdata_creditscore [|-.05] 26| B 84| .84| U |/-.03]-01| U 07| R/S 19| S/SF iris 0| 56| B 0l 56| B 0| 56| B 0l ALL
confidence 01] 01| U 701 .70 U 32| 68| B 14| R/S .86| R/SF Vote 0l 471 B 01l 47] B 02| 45 B 12| ALL
appendicitis 35] 35| U 46| 46| U ||-.04] 45| B 09| R/SF 76| R/SF —— . . =
corral 48] 43| U || 13| 13| U |[-01] 38] B |[-02] RIS || 55| R/SF spect ] ~08) .32] B ||-08] 32| B [|-10] 32] B [|-17] ALL
collins ~o1 o U 611 631 U 201 66| LR 03] RIS 60| R/ISF analcatdata_lawsuit -.10| 29| B -.10| 29| B -.10] 29| B -24| ALL
new-thyroid “12]-08| U || 27| 27| U || 23| 50| B 12| RIS || 23| RISF led7 0] 32| B 0] 32| B 0] 32] B 0] ALL
mfeat-fourier 54 56| U || 56] .56] U || 41| 62| LR || 47| RS 66| RIS house-votes-84 -03| 30| B [|-.03] 30| B [[-.02] 31| B [[-.16] ALL
mfeat-factors -.01 0] U 67| .67 U 47] .66] B 01| R/S 83| R/SF soybean -02| 27| B -02| 27| B -.02] .30 B 0| ALL
mfeat-zernike 0 0] U 56| 57| U 47] .66] B 04] R/S 80| R/SF mfeat-fourier 0] 29] B 0| .29] B 0] .29 B 0| ALL
mfeat-morphological 0] .0I| U 23| 30] B 17| 45] B 03| R/S 37| R/ISE titanic ol 27 B 0l 271 B o 271 B 0] ALL
solar-flare_2 .08] .10 U 02| .04] B A1] 41 B 10| R/SF .61| R/ISF —
analcardata_bankruptcy ||-02] .I8| B || 45| 45] U || 04] 30] B [[-12] K5 || 43| RS 5‘?“““ "03 '%2 g "0(2] ‘52 g "0(2) '%2 g g iii
iris 74 74| U || 75| 75| U |[ 55 .70] B || .58 RIS || 94| SISF prnn_tglass : : :
ccoli 60| 62] U || 50] 50] U || .58] 73| LR || .47] R/SF |[ .70] R/SF glass 0] 26| B 0] 26| B 0] 26] B 0] ALL
balance-scale “O1[ 31[ LR || .13] .13] U 0] 21 B 0| R/S_|| 80| S/SF dermatology 0] 21 B 0] .21] B 0] .21 B ||-.15] ALL
soybean 01] .03] U .19] 29| B 25| 46| B 01| R/S 58| R/SF dna -06| .18 B -.06| .18 B -06| .18] B -.12| ALL
threeOf9 -01] 29[ B [[-01] .12] B [[-01] .09] B O] ALL || .51] SISF lymphography 0| 21| B 0] 21| B |[-.04] .17] B ||-.17] ALL
analcatdata_authorship ||-.01] .01] U 96| 96| U || .63] .72| B O1] S/SF || .75] R/SF page-blocks 01| .19] LR [[-.01] .19] LR [[-.01] 20| LR [[-.05] ALL
lupus 2] O] U I .19] 21] U []-02] 25] B [|-04] RS 1] RiSE haberman -08] .16] LR |[-08] .16] LR [[-06] .16] B |[-22] ALL
Median 0] .03 AS| A5 23] .53 -02 .01 agaricus-lepiota -01| .19] B |[-01] .19] B |[-01] .19] B |[-.02] ALL
Geometric Mean .08] .15 41 43 .22] .51 .01 .57 clean? ~09] .15] LR [-.09] .15] LR |1-.09] .15] LR |[-.01] ALL
’(‘;41’111'“"[ (a’il)/l — g; 0;’ (]’2* ?2* 0(7’ ,% Z; Z tic-tac-toe 0 17| B 0 17| B 0| 17| B 0] ALL
eometric ean (ai .05 . . . . . . .
[ Median [-01] 27| =01 27] [-01] 29] [-06] I
F Spectral ‘ Geometric Mean H—.{B‘ .35‘ H—.{B‘ .35‘ H—.04‘ .35‘ H—.I()‘ H
. [ Median (all) [-01] -01] [[-0I] -01] [-0I] -01] [-01] I
Table VI shows the performance for SKlearn (Gaussian), [ Geomeiric Mean (all) |[-02] .06] __||-02] .06] __|[-02] .07] __|-03] I
SKlearnFast (k-nearest) and R (Gaussian). TABLE VIII
SKlearnFast is a solid all-around choice. SKlearnFast AFFINITY PROPAGATION
outperforms other implementations, e.g., analcatdata_authorship Dataset SKlearn R TA.
. . v v
reports a performance of .96 where it is around .63 to .72 for slel§lslel §lels
R and O for SKlearn! Similar for mfeat-pixel. More than having =Sl=la ==& |=]=
a high global performance, it is also quite stable (a lot of U’s) collins 191 63| B || 21| 62] B || .I1] ALL
. .. . . breast-w .03| 47| B 07| .17 B .10| ALL
despite the fact that it is supposed to sacrifice accuracy in the s 6 B 1 24 62 B 1 &7 ALL
name of efficiency (compared to Gaussian). cleveland-nominal -02[ 31 B |[.02] .03] U || .11 ALL
MAX performance (best case). The max values range from tokyol -ou) 31 LI .10} .30] B 0] ALL
p . - . g promoters 0] 28] B 23] 28] U 0] ALL
0 to .92 depending on the dataset and the toolkit. However, mfeat-morphological 0| 28] B 0| 27| B |[-.01| ALL
SKlearn shows the worst performance as it is the only one ecoli 21] .37) B || 21] 24] U || .15] ALL
. . . titanic ~0I| 24| B |[-01] .09] B 0] ALL
to perform consistently worse than random (9 times, its max soybean ST 3 TR 21 357 O " 361 ALL
is around O; across all datasets it has a min/max of 0, too), wine-recognition 17] 30| B || 17| 21| U || 45] ALL
wher he max for SKlearnF nd R much higher. analcatdata_cyyoung9302 0| .19 B A8 191 U 0| ALL
ereas the max for SKlea aSt_ and are ll.C ghe analcatdata_creditscore -03] .16] LR ||-.03| .16/ LR || .01| ALL
SKlearnFast agrees more with R than with SKlearn. dermatology 0T 15 B 14| 15 U 1 .05 ALL
Last columns show that R generally agrees with SKlearnFast confidence 24| 311 B || .24] 31| B ]| 50] ALL
di . (18 i ) h it 1 new-thyroid .04| 17| B 12| 17| B 0] ALL
regar ing maximums 18 imes), W .ere it generally agrees segmentation ol 1Al B T 14 U 0T ALL
with SKlearn for the minimums (20 times). mfeat-fourier 0| 13| B || 12| 13| U 0] ALL
balance-scale 0] .06] LR || .03] .I5| B 0] ALL
G. DBSCAN analcatdata_bankruptcy 04| 15| B || .04] .15| B || .07 ALL
Recall that DBSCAN is deterministic; Table VII shows the solar-flare_1 08| 17| B || .09] .I5] B || .13] ALL
I prnn_synth 07| .17 B 07 .11 U 38| ALL
results. solar-flare_2 01| 13| B | .02] .12] B 0| ALL
Low performance (with default parameters). We noticed pron_fglass 13] 20] B || 13| .17| U || .10] ALL
that DBSCAN can suffer from low accuracy with default glass 3] 20 B || I3[ .17] U ]| .10] ALL
arameters. For example, on datasets new-thyroid and anal- | Median [.02] .22 221 .17] [-07] I
p : ple, Y [ Geometric Mean 07] 26| |2 21 | .17 I
catdata_lawsuit, accuracy can be as low as -0.2 and -0.1, [ Median (all) 0] .04] .01 03] [.03] I
respectively: lower than random and lower than K-means++. [ Geometric Mean (all) | .02] .08] [ .04] 07  [[ 18] [

To gauge the impact of (small) variations in defaults, we
also ran experiments where we varied its minPoints and &
parameters.® This leads to wide-spread bimodality and outliers
— note the B’s and LR’s. For example, the accuracy varies

8These control the minimum cluster size
1 < minPoints < 10) and maximum neighborhood
was 0 < € < 10.

(our range was
size (our range

widely for the same toolkit across different runs: this range can
be as large as 0.95 (min 0, max 0.95) for analcatdata_creditscore,
0.89 (min -0.2, max 0.69) for new-thyroid or 0.84 for breast-w
(min -0.07, max 0.77). This finding is especially worrisome
for a deterministic algorithm.



H. Affinity Propagation

Table VIII shows the results. Recall that this algorithm (AP)
is deterministic. AP uses a dampingFactor parameter.’

Variation across toolkits. Given that this algorithm is
deterministic, we should not see variation across toolkits when
toolkits are run with the same parameter (damping factor).
However, max performance differed substantially, e.g., on
breast-w max was .47 for SKLearn and .17 for R; for cleveland-
nominal max was .31 for SKLearn and .03 for R.

Variation across runs. Our experiments show that the
damping factor induces substantial differences between min
and max performances across runs. This was the case for both
SKLearn and R, e.g., for SKLearn we had collins (min .19,
max .63) or breast-w (min .03, max .47) and for balance-scale
on R we had (min 0.03, max .15).

VI. RELATED WORK

While clustering is a richly explored field, prior clustering
research efforts have not questioned or investigated clustering
reliability or correctness. For example, Software Engineering
research has used clustering as a tool rather than as an object
of study; Machine Learning and Data Mining research can
be split into theoretical research on clustering properties,
or experiments on improving clustering; in both cases, the
research literature assumes correct algorithm implementations.

The study closest to us in breadth of algorithm/toolkit com-
binations is Kriegel et al.’s [19]. They have also pointed out the
peril of assuming that “toolkits don’t matter”: an algorithm’s
implementation is not standardized across all toolkits. They
have compared several algorithm and implementations on a
narrower benchmark set (a single dataset of 500k Twitter loca-
tions, and subsets thereof) but their goal was different: runtime
efficiency. They found orders-of-magnitude differences across
toolkits for the same algorithm and same input dataset.

Ben-Hur et al. [20] have investigated hierarchical clustering
on several datasets: varying K to find the value for which the
algorithm is most stable. Our goal is toolkit dependability, and
our focus is on datasets with ground truth and fixed K.

Fred [21] has proposed voting K-means, an improvement
upon standard K-means by choosing clusters on a majority
voting policy, to weed out outliers. They use consistency
(similarity of partitionings for multiple runs of K-means on
the same dataset and the same K') which is akin to our notion
of determinism. Their experiments were run with varying K
on two datasets. Our use of ARI is more robust, and our goal
is toolkit dependability, rather than improving K-means.

VII. CONCLUSIONS

Clustering is widely used, but its reliability has not been
questioned yet. Moreover, verification and validation ap-
proaches for clustering are scarce. We propose SmokeOut, an
approach for testing clustering implementations that leverages
the current abundance of datasets and clustering toolkits. We
applied SmokeOut to quantify clustering outcomes across
different algorithms, toolkits, and multiple runs. Our findings

9The factor controls
0.5 < dampingFactor < 1.

oscillations; in our experiments

show large variations across all these dimensions, including
violations of determinism. Our approach has the potential to
improve the state-of-the-art in clustering by allowing software
engineering practitioners and researchers to test and improve
clustering implementations, which in turn benefits the larger
classes of clustering users.
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