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Abstract—A deterministic clustering algorithm is designed
to always produce the same clustering solution on a given
input. Therefore, users of clustering implementations (toolkits)
naturally assume that implementations of a deterministic clus-
tering algorithm A have deterministic behavior, that is: (1) two
different implementations /; and /> of A are interchangeable,
producing the same clustering on a given input D, and (2) an
implementation produces the same clustering solution when run
repeatedly on D. We challenge these assumptions. Specifically,
we analyze clustering behavior on 528 datasets, three determin-
istic algorithms (Affinity Propagation, DBSCAN, Hierarchical
Agglomerative Clustering) and the deterministic portion of a
fourth (K-means), as implemented in various toolkits; in total,
we examined 13 algorithm-toolkit combinations. We found that
different implementations of deterministic clustering algorithms
make different choices, e.g., default parameter settings, noise
insertion, input dataset characteristics. As a result, clustering
solutions for a fixed algorithm-dataset combination can differ
across runs (nondeterminism) and across toolkits (inconsistency).
We expose several root causes of such behavior. We show that
remedying these root causes improves determinism, increases
consistency, and can even improve efficiency. Our approach and
findings can benefit developers, testers, and users of clustering
algorithms.

Index Terms—ML testing, ML reliability, cluster analysis

I. INTRODUCTION

The objective of cluster analysis (clustering) is to partition
a given n-point dataset D into K “clusters”; points within
a cluster are related or share a certain characteristic. A
deterministic' clustering algorithm is designed to produce
the same clustering solution C'x, when run repeatedly on
the same dataset D. Clustering toolkits are widely used in
research and practice, including in critical sectors such as
medicine, criminal justice, robotics, or finance [3]. Users who
run such toolkits should be able to assume that the toolkits
are reliable and interchangeable. Those affected by decisions
made with toolkits’ support should be able to assume that the
toolkits are reliable. However, several factors undermine these
assumptions. First, as the testings of implementations of ML
algorithms is slight different from classical implementations,
faults are not always due to bugs in the code, but also due
to unaware of implementation subtleties or parameter combi-

'We use the classical definition of program determinism: “a given input
is always expected to produce the same output” [1], [2]; this is not to be
confused with narrower definitions, e.g., deterministic thread scheduling.

nations. Critical sectors might lack such clustering experts?
to guarantee deterministic, consistent behavior. Second, our
findings show that even after carefully tuning parameters — as
experts would do — clustering toolkits are neither deterministic
nor interchangeable: clustering solutions can vary across re-
peated runs due to implementation-induced nondeterminism,
or across toolkits, due to inconsistent implementations of
the same algorithm in different toolkits. Third, for unlabeled
datasets, users or researchers simply have no reference point
to assess an implementation’s validity.

More precisely, we believe that end-users of deterministic
clustering algorithms should be able to make two assumptions:

1. Consistency: Clustering toolkits consistently implement
a certain algorithm, e.g., running algorithm A, as implemented
in two different toolkits /; and I, on the same dataset D,
yields the same clustering.

2. Determinism: The implementation of a deterministic
algorithm is valid, i.e., computes the same clustering solution
C when run repeatedly on the same dataset D.

We define consistency and determinism in Section II-A;
check whether these properties hold in practice; find root
causes when they do not hold; and find effective controls to
re-establish these properties to a large extent.

We illustrate the consequences of nondeterminism and in-
consistency in Table I on dataset “Breast Cancer Wisconsin
(Original)”® [5]-[7]. The dataset has 699 instances and two
classes: benign and malignant. Ideally, two different runs or
two different toolkits would agree 100% when clustering this
dataset, but we found that that was not the case. First, we
observed nondeterminism (second column). When running
R’s implementation of the deterministic algorithm Affinity
Propagation, two different runs can disagree on as many as
43 instances (while agreeing on the other 656). Next, we
observed inconsistency (columns 3-5). For example, when
running Affinity Propagation’s implementations in Scikit-learn
and in R, the two toolkits disagree on 36 points. More severely,
for algorithm DBSCAN, MLpack’s clustering solution dis-
agrees with the solution obtained via Scikit-learn/R/Matlab

2Forty-eight percent of global businesses, including healthcare, are suffering
from a big data analytics skills gap [4].

3This breast cancer database was obtained from the University of Wisconsin
Hospitals, Madison from Dr. William H. Wolberg. Available at https://www.
openml.org/d/15
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NONDETERMINISM AND INCONSISTENCY LEAD TO DISAGREEMENTS WHEN CLUSTERING THE 699-INSTANCE DATASET “BREAST CANCER WISCONSIN”.

TABLE I

R vs. itself Scikit-learn vs. R Scikit-learn/R/Matlab vs. MLpack | Scikit-learn/R vs. Matlab
Algorithm | Affinity Propagation | Affinity Propagation DBSCAN Hierarchical Agglomerative
Parameters damping=0.916 damping=0.916 eps=0.5, minPts=5 linkage=Ward
Issue Nondeterminism Inconsistency Inconsistency Inconsistency
#instances Disagree 43 36 212 40
(out of 699) Agree 656 663 487 659
on 212 points. Finally, for Hierarchical Clustering, Scikit- TABLE 11

learn/R disagree with Matlab on 40 points. Note how toolkits,
parameters, or even individual runs, impact the outcome of
a supposedly deterministic algorithm; this is problematic in
general (undermining basic repeatability) or in high-stakes
scenarios, e.g., when clustering is used in medical diagnosis.

We now describe the experimental setup. We analyze clus-
tering behavior on 528 datasets in several toolkits (Scikit-learn,
R, MLpack, Matlab, TensorFlow); because the four algorithms
are not available in all toolkits, in total we examined 13
algorithm-toolkit combinations.

Of the 528 datasets, about 400 were medical datasets, and
the rest were benchmarking datasets. We examine medical
datasets for two reasons. First, in healthcare, accuracy and
correctness are paramount. Second, healthcare is a challenging
domain, characterized by limited data volume and requiring
model interpretability [8], which makes clustering via the
algorithms we examine here more appropriate/preferred (as
opposed to, say, Neural Networks; see Section VII for details).

We show that default parameter settings (representing latent
assumptions developers make about how the toolkits will
run) undermine both the determinism and interchangeability
assumptions. For example, 4 out of the top-5 highest incon-
sistencies observed when running default implementations of
Hierarchical Agglomerative Clustering were on Gene Expres-
sion for Oncology datasets (Section V-B).

In Section IT we define deterministic clustering and discuss
the experimental setup. Next, we quantify implementation-
induced nondeterminism and inconsistency, find their root
causes, and show how they can be alleviated. We do so for
three deterministic algorithms — Affinity Propagation (Sec-
tion III), DBSCAN (Section IV), Hierarchical Agglomerative
Clustering (Section V) — and the deterministic part of K-means
(Section VI). The end of each section presents actionable
findings. In Section VII we review related work.

II. DEFINITIONS AND EXPERIMENTAL SETUP

We now define the main concepts and describe the setup
for our approach.

A. Clustering, Determinism, and Consistency

Clustering is defined as follows. Given a set D of n points
(d-dimensional vectors in the R? space), the objective of
clustering is to partition D into K non-overlapping subsets
(clusters) Cx = {D1,...,D,,..., Di} such that intra-cluster
distance between points (that is, within individual D;’s) is
minimized. A deterministic clustering of D yields clustering
solutions C'% that are isomorphic to Ck.

STATISTICS ON DATASETS.

Min Max | Geometric Mean
Instances 27 9,989 454
Features (attributes) 2 | 61,360 39
K (# of clusters) 2 108 2.6

Determinism. A clustering implementation is deterministic
if two different runs R and R’ of the implementation on the
same dataset D yield isomorphic clusterings Cr and Cg.

Consistency. Two clustering implementations /; and I are
consistent if they yield isomorphic clusterings C; and C'y when
run on the same dataset D.

Violations of the aforementioned isomorphism requirements
are due to nondeterministic or inconsistent implementations.

B. Datasets

We used 528 datasets from OpenML [9]. About 400 of these
datasets are from medicine/bioinformatics, e.g., separating
benign from malignant tumors, while the rest come from the
Penn ML Benchmark [10], a benchmark suite specifically de-
signed to evaluate ML implementations. Table II summarizes
the characteristics of our datasets: on average, datasets have
454 instances, 39 dimensions, and 2.6 clusters.

C. Measuring Clustering Similarity and Accuracy

There are a myriad metrics for comparing two clusterings
(partitionings) C' and C’ of an underlying set D. We use
the adjusted Rand index (ARI) [11] as it is versatile, robust,
intuitive, and therefore widely-used [12]. We have:

—1 < ARI(C,C") < 1

with ARI(C,C") = 1 indicating a perfect match (i.e., the
same partitioning, or same solution); ARI(C,C") = 0 corre-
sponds to random/independent clustering (i.e., as if C' and C’
elements were assigned to clusters randomly); and negative
values of ARI(C,C") indicate strong disagreement (i.e., few
elements, if any, are in the same clusters in both C' and C").
We use two bases for computing the ARI.

Accuracy is a term we use when comparing a clustering
solution to Ground Truth (our datasets come with Ground
Truth). When evaluating a clustering algorithm in the presence
of Ground Truth, this is the main, “customer facing,” external
validation measure.

Consistency or Mutual ARI are terms we use when compar-
ing two clustering solutions, C; and Cy, produced via different
runs or different toolkits on the same dataset; mutual ARI is
effective at internal validation, e.g., revealing inconsistency or
nondeterminism without requiring Ground Truth.



procedure AffinityPropagation(D, K):

/+ initialize K exemplars (cluster centers)

C ={{dc1},{dc2},...{dcx }};

0;
0;

o0 —

o
// refine clusters into C™ev
cnew = refine (C);
if (d(C,C"e%) <¢)
c++; / no substantial changes in last c iterations
else
¢ = 0; // substantial changes

C = C™e%; // update solution
i++;

}
while ((c < CONV_ITER) && (i < MAX_ITER));

return list of clusters C;

Fig. 1. Affinity Propagation pseudocode.

Accuracy and consistency are not interchangeable. For
example, when clustering a dataset D, two toolkits can have
ARI vs. Ground Truth G; = 0 and G5 = 0 but their mutual
ARI can be M;2 = 1. That is, both toolkits yield the same bad
solution. However, if G; = 1 and G5 = 1 (perfect clustering)
then necessarily M5 = 1 (perfect clustering is unique).

D. Algorithms and Toolkits

We studied 3 deterministic algorithms (Affinity Propagation,
DBSCAN, Hierarchical Agglomerative Clustering) and the
deterministic part of K-means. Each algorithm is described at
the beginning of its respective section. We examined several
toolkits: Matlab [13], MLpack [14], R [15], Scikit-learn [16],
and TensorFlow [17]. The toolkits are popular: some have
millions of users [13], [18], some are being used by large
companies [19], [20].

III. AFFINITY PROPAGATION

Affinity Propagation (AP) forms clusters by identifying “ex-
emplars”, i.e., one representative per cluster; initially all points
are considered potential exemplars, and affinity (belonging) to
a certain cluster is constructed iteratively via message-passing;
the algorithm uses a damping factor — typically in the interval
[0.5, 1) — to avoid moving points back-and-forth between
clusters. We studied this algorithm’s implementation in two
toolkits: Scikit-learn and R.

A. Algorithm Overview

AP proceeds in two phases: initialization followed by
iteration. Figure 1 shows the algorithm’s pseudocode. AP
is convergence-based, that is, it iterates until a convergence
metric indicates the clusters are stable, or an iteration limit
has been reached. Since these conditions (or parameters) are
implementation-specific, nondeterminism can ensue.

During initialization, the algorithm deterministically picks
the K initial points that are cluster representatives (exemplars).
In the iteration phase, the current clustering solution C' is

TABLE III
BOTTOM-5 AND MEAN CONSISTENCIES FOR AFFINITY PROPAGATION;
LOWER ARI VALUES MEAN STRONGER DISAGREEMENT.

ARI: Scikit-learn vs. R
Default analcatdata_uktrainacc 0
parity5 0
sleuth_case1102 0
rabe_166 0
sleuth_ex1221 0
mean (all 528 datasets) 0.68
Forcing R to match parity5 0.02
Scikit-learn’s #iterations mux6 0.11
car-evaluation 0.12
xd6 0.12
threeOf9 0.14
mean (all 528 datasets) 0.95
Forcing Scikit-learn to match | dbworld-subjects 0
R’s #iterations schivote 0
hutsoff99_child_witness 0
AP_Prostate_lung 0
diggle_table_a1 0
mean (all 528 datasets) 0.94
Adaptive MAX_ITER parity5 0
sleuth_case1102 0
rabe_166 0
visualizing_slope 0
analcatdata_vehicle 0
mean (all 528 datasets) 0.81

refined into C™¢" at each iteration. If the distance between
the current and previous iteration’s solution d(C,C™") is
lower than a predefined threshold e, the algorithm might
have reached convergence (tracked by c). The iteration phase
ends when either the clusters are not changing anymore
(c >=CONV_ITER) or when a predefined total iteration limit
(i >=MAX_ITER) has been reached. Examining the source
code of different implementations for the same algorithm
reveals that different toolkits use different default values for
CONV_ITER and MAX_ITER, which can lead to inconsistency.

B. Inconsistency

We measure inconsistency using the mutual ARI (Sec-
tion II-C). Ideally, the mutual ARIs would be 1 for all datasets,
indicating that Scikit-learn and R yield the same solution.
However, we found that toolkits disagree on 196 datasets. The
‘Default’ rows in Table III show the bottom-5 consistencies,
i.e., the strongest disagreements. For example on parity5, the
toolkits produce such different clustering solutions that they
are practically unrelated: ARI = 0.02. The mean consistency
is ARI = 0.68, well short of ARI = 1. The remainder of
this section delves into inconsistency root causes and shows
how addressing these root causes is effective at reducing
inconsistency (the remaining Table III rows, explained in
Sections III-E and III-F).

C. Case Study 1: Bounding the Number of Iterations

Different clustering implementations make different latent
assumptions about convergence conditions, materialized in
different default parameters.

We illustrate this in Figure 2 on Scikit-learn vs. R. By
default, Scikit-learn bounds the total number of iterations
MAX_ITER to 200, while R bounds it to 1000. The figure
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Fig. 2. Affinity Propagation’s accuracy vs. #iterations in Scikit-learn and R.

shows the number of iterations (x-axis) required to cluster each
dataset and the accuracy, i.e., ARI vs. Ground Truth (y-axis).
Note how Scikit-learn takes substantially fewer iterations to
cluster the datasets, yet without sacrificing precision.

A paired test on mean accuracy, that is, Scikit-learn’s
accuracy distribution vs. R’s accuracy distribution, has shown
no significant difference (p—value > 0.1). However, a paired
test on #iterations until stopping (i in Figure 1) shows signif-
icant differences (p—value ~ 0): Scikit-learn’s mean was 66
iterations, while R stops at 220 iterations, on average.

In fact, Scikit-learn always (for all datasets) terminates in
fewer iterations compared to R. Regarding accuracy, we found
that, out of 528 datasets: Scikit-learn has higher ARI than R
for 232 of them; lower ARI for 200 of them; and the same ARI
for 96 of them. To summarize, Scikit-learn is in a win-win,
higher effectiveness-higher efficiency situation in 232 cases
(fewer iterations, higher ARI).

Finally, note the “hard” limits for MAX_ITER at 200 and
1000, respectively — the 1000 vertical line is clearly visible
for R in Figure 2 — if the implementation has not converged
by then, the toolkit terminates. These parameters are up to the
developers but their default values end up having substantial
impact on accuracy, as shown next.

D. Under-iterating and Over-iterating

arsenic-male-lung(N=559, d=5, k=2)
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Fig. 3. Lose-lose due to over-iterating in R (orange dashed line); note the
higher #iterations and lower final accuracy compared to Scikit-learn (blue).

Figure 3 shows the danger of over-iterating. The dataset
is arsenic-male-lung; dataset characteristics are shown on top
of the chart. Note how Scikit-learn exits after 16 iterations,
at ARI=0.95, whereas R continues. Eventually R terminates
after 231 iterations at ARI=0: a lose-lose scenario.
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Fig. 4. Under-iterating — premature termination — leads to lower accuracy in
Scikit-learn (blue solid line) compared to R (orange dashed line).

Conversely, Figure 4 shows the danger of under-iterating
(on the zoo dataset). Note how Scikit-learn exits prematurely
(blue solid line) after just 81 iterations, at ARI=0.29, whereas
R (orange dashed line) continues; eventually R terminates, at
ARI=0.52, after 174 iterations.

Table IV shows the highest margins for Scikit-learn and
R, respectively. The first column contains the dataset name,
the next four columns show the iterations and accuracy for
Scikit-learn and R, respectively, while the last column shows
the accuracy difference (absolute value).

Note how, on the arsenic-* datasets,* R’s accuracy is essen-
tially 0, whereas Scikit-learn’s is 0.64—-0.95. Moreover, Scikit-
learn achieves this accuracy in just 16 iterations; this is due
to Scikit-learn default setting CONV_ITER=15. The second half
of the table shows those datasets where R has the upper hand,
but we found the accuracy difference to be less than 0.22.

“4Predicting the risk of certain cancers based on exposure to arsenic.



TABLE IV
HIGHEST ACCURACY MARGINS FOR AFFINITY PROPAGATION.

Dataset Scikit-learn R Accuracy
Iterations | Accuracy | Iterations | Accuracy gap
Scikit-learn’s | arsenic-male-lung 16 0.95 247 0 0.95
highest margin | arsenic-female-lung 16 0.75 168 0 0.75
arsenic-male-bladder 16 0.64 247 0 0.63
kec1-top5 16 0.38 1000 0.04 0.34
rabe_148 19 0.57 148 0.27 0.30
R’s Z00 81 0.29 255 0.52 0.22
highest margin | robot-failures-Ip1 16 -0.05 454 0.13 0.18
tokyo1 16 0 164 0.17 0.17
AP_Omentum_Prostate 16 0 245 0.16 0.16
AP_Prostate_Lung 16 0.04 206 0.20 0.16
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Fig. 5. ARI vs. #iterations: Scikit-learn predicted (green crosses), Scikit-learn default (blue triangles), R default (orange circles); for legibility, x-axis is

logarithmic.

TABLE V
TOP-5 ACCURACY GAPS AFTER CONTROLLING FOR #ITERATIONS.
Dataset Scikit-learn R Gap
schivote 0.10 | -0.06 0.17
ar3 0.12 0.23 0.10
dbworld-subjects 0.14 | 0.07 || 0.07
tecator 0.19 0.14 0.05
analcatdata_jap. 0.07 | 0.11 0.04

E. Heuristic 1: Consistent MAX_ITER

One potential solution for eliminating cross-toolkit incon-
sistencies would be to use the same MAX_ITER in both toolkits.
Therefore, we ran experiments where, after obtaining R’s
terminating i (number of iterations), we forced Scikit-learn’s
to use it: MAX_ITER=i. After implementing this control into
Scikit-learn, we were able to make two observations.

First, we noticed a slight decrease in Scikit-learn’s accuracy,
but the decrease was not statistically significant (p—value =
0.16). Second, the high-margin discrepancies between the two
toolkits were removed or reduced substantially. In Table V
we show the largest accuracy gaps after implementing this
control. Note that accuracy differences were at most 0.17 (in
stark contrast with Table IV where accuracy gaps were as high
as 0.95). This demonstrates that forcing Scikit-learn to iterate

longer yields no statistically significant gains in accuracy.

Finally, we measure how much consistency improves when
forcing one toolkit to use the other’s #iterations. The ‘Forc-
ing...” rows in Table III show consistency improving from 0.68
(default) to 0.94 or 0.95, respectively, which indicate this is
an effective control.

F. Heuristic 2: Using an Adaptive MAX_ITER

An alternative solution to this problem (a fixed MAX_ITER
does not fit all datasets) would be to use an “adaptive,” per-
dataset MAX_ITER. This showed promise as we were able to
correlate log(NN) with i, the number of iterations at which
the algorithm has terminated. Specifically, we ran an Ordinary
Least Squares (OLS) regression where the dependent variable
was the final number of iterations i, and the independent
variable was log(V); note that N is the number of points
(instances) in the dataset. For Scikit-learn we found a good
fit: R? = 0.883, t—value = 42, p—value ~ 0. For R, the
regression did not find a good fit (Section III-G explains why).

Therefore we constructed a model where MAX_ITER was
predicted by log(N). Figure 5 shows how “tailoring” the
termination to the dataset by replacing a fixed MAX_ITER with
a predicted one effectively shifts all the Scikit-learn points



Scikit-learn

R

random_state = np.random.RandomState(0)

# Remove degeneracies

S += ((np.finfo (np.double).eps = S + np.finfo (np.double).tiny = 100) «
random_state.randn(n_samples, n_samples))

if (!nonoise)
randomMat <— matrix(rnorm(N = N),N)
s <— s + (.Machine$double.eps * s + .
Machine$double.xmin « 100) » randomMat

Fig. 6. Noise insertion code.

to the left (terminate sooner): the green crosses towards the
left are Scikit-learn-predicted, while the blue triangles are the
Scikit-learn-default. Moreover, a paired test on ARI indicated
no significant ARI reduction (p—value = 0.27); that is, no
precision is lost. However the test shows a statistically signifi-
cant reduction in #iterations, from 66 to 57. To conclude, this
approach improves efficiency without sacrificing precision.
The ‘Adaptive MAX_ITER’ rows in Table III show how this
improves consistency from 0.68 (default) to 0.81.

We emphasize that the point of this “tailoring” is not to
improve accuracy but to underscore that defaults can be too
rigid. Consequently, accuracy, efficiency, or both can suffer.

schlvote(N=38, d=6, k=2)
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Fig. 7. Differences due to noise, after controlling for #iterations: by default,
Scikit-learn would terminate quickly and at low accuracy (blue). Forcing
Scikit-learn to keep iterating improves accuracy (green, dotted line). R’s
accuracy shown in orange dashed line.

G. Noise

Another source of inconsistency we discovered was the
noise insertion policy. Essentially, toolkits choose to add
“noise” to prevent degenerate clustering scenarios. Figure 6
shows the noise insertion code in Scikit-learn and R (noise
insertion is ON by default in both toolkits). For both Scikit-
learn and R, noise ranges from -le-15%s to le-15%s(s is
similarity matrix). However, R add random ‘“noise”, while
Scikit-learn set fixed seed in the code, so the add ‘“noise”
is fixed. To quantify the impact of randomness of noise, we
forced both toolkits to run for the same number of iterations,
and compared the final outcomes, as discussed next.

1) Inconsistency: Figure 7 illustrates noise-induced incon-
sistency after controlling for #iterations (i.e., forcing Scikit-
learn to “keep going” until it matches R’s final number of
iterations). Note how the difference in noise leads to a 0.2
gap in accuracy: 0.1 for Scikit-learn (green, dotted line) and
-0.1 for R (orange, dashed line). After we turned off noise
insertion, the two toolkits essentially achieve the same ARI
(p—value < 0.05).

2) Nondeterminism: R inserts random noise, leading to
nondeterminism, as discussed next (as expected, turning noise
insertion off makes R’s implementation deterministic).

TABLE VI
R: TOP-5 DIFFERENCES IN #ITERATIONS ACROSS RUNS.
Dataset Iterations
Min | Max Diff.
threeOf9 388 | 1000 612
scene 419 | 1000 581
corral 396 965 569
jungle 432 | 1000 || 568
parity5 437 | 1000 563
TABLE VII
R: TOP-5 DIFFERENCES IN ARI ACROSS RUNS.
Dataset ARI
Min | Max || Gap
shuttle-landing-control || -0.07 | 0.44 [| 0.51
Titanic 0.04 0.18 0.14
analcatdata_vehicle 0.01 0.10 0.09
parity5 -0.04 | 005 || 0.09
dbworld-subjects 0.06 | 0.15 || 0.09

When running R repeatedly on each dataset 30 times,
out of 528 datasets, 107 had a nondeterministic number of
iterations. In Table VI we show the top-5 such cases (minimum
and maximum #iterations) sorted by the minimum-maximum
difference. The numerous max. = 1000 values indicate that R
failed to converge on that dataset for at least one run, and was
force-stopped by the default MAX_ITER. We believe that this
convergence nondeterminism — on the same dataset and with
the same parameters — would surprise most R users.

Similarly, in Table VII we show the top-5 datasets, sorted
by the minimum vs maximum accuracy gap, achieved when
repeatedly running R, 30 times on the same dataset. We
believe that understanding/avoiding such noise subtleties is
well beyond the purview of a typical clustering user.

H. Actionable Findings

To conclude, our experiments have revealed that Affinity
Propagation has deterministic behavior in Scikit-learn, and
nondeterministic behavior in R due to flexible seed of noise
insertion. Scikit-learn and R’s implementations are mutually
inconsistent due to default iterations and flexible seed of noise
insertion.

These findings suggest that (a) users on R platform can
track nondeterminism and inconsistency by turning off noise
insertion. However, there is no parameter in Scikit-learn to
turn off noise or set seed that makes the process to validate
results and eliminate inconsistency harder. (b) Compared to
R’s performance, Scikit-learn is in a win-win scenario. we



suggest to use an adaptive MAX_ITER in Scikit-learn to improve
determinism, consistency, and might even improve efficiency,
i.e., high accuracy without over-iterating.

IV. DBSCAN

TABLE VIII
ACCURACY FOR DBSCAN (ARI W.R.T. GROUND TRUTH): DEFAULT
(TOP); CONTROLLED FOR eps (CENTER); HEURISTIC FOR minPts

procedure DBSCAN(D, eps, minPts):
C =0;

foreach p in D {
if (pnot in a cluster) {
N = set of points eps—reachable from p;
if (|N| < minPts) {
mark p as noise;

else {
¢ = newCluster();
add cto list of clusters C;
foreach n in N {
addToCluster(c,n);
N’ = set of points eps—reachable from N;
N=NUN};
}
}
}
}

return list of clusters C;

Fig. 8. DBSCAN pseudocode.

DBSCAN forms clusters by looking for “dense” regions,
i.e., regions with at least min Points separated by a maximum
distance eps.’> Unlike Affinity Propagation’s variable #itera-
tions, DBSCAN’s number is fixed: in the general scenario we
explore here, it practically executes O(N?) steps.

A. Algorithm Overview

Figure 8 shows the algorithm’s pseudocode. For each
unvisited point p, the algorithm “scans” its neighborhood
(within eps distance). If there are at least minPts in this
neighborhood, p is a “core point” and will start a new cluster
c; all of p’s neighbors, and recursively their neighbors within
eps, will be added to c. If, on the other hand, p does not have
enough neighbors, it is declared noise and will not be part of
any clusters.

B. Inconsistency

We studied this algorithm’s implementation in four toolkits:
Scikit-learn, R, MLpack, and Matlab. There was no variation
across runs for any of the toolkits, so our examined DBSCAN
implementations were deterministic across runs.

Therefore, we focus on inconsistency; specifically, we ob-
served inconsistency when comparing MLpack with the other
three toolkits.

SFor DBSCAN, input order can introduce nondeterminism; we fixed input
order to eliminate this potential issue.

(BOTTOM).
Dataset Scikit-learn/ MLpack Max
R/Matlab Gap
Defaults eps=0.5, eps=1
minPts=5 minPts=5
z00 -0.05 0.71 0.76
led7 0.33 0 0.33
ionosphere -0.03 0.27 0.31
iris 0.75 1.00 0.25
acute-inflammations 0.20 0.44 0.24
mean (all 528 datasets) 0.006 0.009
Controlled eps eps=0.5 eps=0.5
minPts=5 minPts=5
seismic-bumps 0.06 0.20 0.15
phoneme 0.13 -0.01 0.14
bank8FM -0.03 0.02 0.06
seeds 0.06 0 0.05
acute-inflammations 0.20 0.23 0.03
mean (all 528 datasets) 0.006 0.006
Heuristic minPts eps=0.5 eps=1
minPts=d+1 | minPts=d+1
z00 0 0.37 0.37
led7 0.33 0 0.33
smartphone-b. 0 0.31 0.31
qualitative-bankruptcy 0.19 0.48 0.28
acute-inflammations 0.17 0.44 0.27
mean (all 528 datasets) 0.006 0.012
TABLE IX
BOTTOM-5 AND MEAN CONSISTENCIES FOR DBSCAN.
MLpack vs
Scikit-learn/R/Matlab
Defaults sonar -0.015
qual-bk. -0.13
vineyard -0.10
hayes-roth -0.09
pyrim -0.09
mean (all 528 datasets) 0.79
Controlled seeds -0.07
for eps bank8FM 0
fri_c1_250_5 0
fri_c1_500_5 0
fri_c3_100_5 0
mean (all 528 datasets) 0.97
Heuristic hayes-roth -0.09
minPts vineyard -0.08
qual-bk. -0.078
solar-flare -0.073
seeds -0.059
mean (all 528 datasets) 0.81

a) Defaults: We started by running DBSCAN with de-
faults; we have default minPts=5 for all three toolkits, default
eps=0.5 for Scikit-learn and R, and default eps=1 for MLpack.
We show the accuracy in the top third of Table VIII: the top-5
datasets, with the largest gaps between toolkits. The difference
between MLpack and the other toolkits across all datasets was
marginal, p—value = 0.1, albeit with a slightly higher mean
(0.009 compared to 0.006). However, the difference could be
quite large for specific datasets, e.g., for zoo, MLpack achieved
ARI=0.71 while Scikit-learn and R’s ARI=-0.05. The gap was
noticeable for other datasets, too.



b) Controlling for eps: Next, we controlled for eps by
setting MLpack’s eps to 0.5. The results are shown in the mid-
dle of Table VIII: the gap was reduced considerably (at most
0.15 for dataset seismic-bumps). Actually, this control made
the accuracies across all datasets statistically indistinguishable
(three paired tests between the three toolkit combinations
yielded p—value > 0.1; the mean was 0.006 for all toolkits).
We have thus shown that, by controlling for eps, we can make
MLpack’s behavior more consistent with the other toolKits.

c) Using a heuristic for minPts: While by default
minPts=5 in all toolkits, R’s DBSCAN package documen-
tation mentions “Setting parameters for DBSCAN: minPts
is often set to be dimensionality of the data plus one or
higher” [21]. Therefore, we set minPts=d+1, where d is the
dimensionality of the dataset; we present the results in the
bottom rows of Table VIII. The difference between MLpack
and the other toolkits across all datasets was significant,
p—value = 0.02, and MLpack’s mean in this scenario was the
highest of all three scenarios: 0.012. The maximum gaps were
also more prominent compared to the “controlled” version
above (maximum gap was 0.37 for dataset zoo). Hence it
appears that the heuristic is only effective for MLpack.

d) Mutual ARI: The measurements so far have used
accuracy (ARI vs. Ground Truth). Table IX shows the mutual
ARI results, before and after eliminating these root causes.
We make several observations: with a default setting of
eps=1, MLpack disagrees with the other toolkits substantially
— note how the bottom-5 consistencies have negative ARI
values, which signify disagreeing clustering solutions (worse
than unrelated/random clustering which have ARI=0, see Sec-
tion II-C). Across all datasets, we have mean ARI=0.79. The
situation improves when controlling for eps (middle of the
table, note that mean ARI=0.97). Finally, when using eps=1
and minPts=d+1, MLpack again tends to disagree (mean
ARI=0.81).

C. Actionable Findings

To conclude, our experiments have revealed that DBSCAN
has deterministic behavior in Scikit-learn, R, Matlab and
MLpack. MLpack’s implementation can be inconsistent with
the other toolkits due to its different default eps.

These findings suggest that MLpack can gain consistency
and accuracy: using a common eps makes MLpack more
consistent with the other toolkits, while using a heuristic
minPts improves MLpack’s accuracy.

V. HIERARCHICAL AGGLOMERATIVE CLUSTERING

Hierarchical clustering (we use its agglomerative variant)
proceeds bottoms-up by first considering each point a cluster
and then iteratively merging clusters based on linkage criteria
(minimizing distance between points, usually).

A. Algorithm Overview

Figure 9 shows the algorithm’s pseudocode. Initially, each
point d; is its own cluster. Next, inter-cluster distances d(C;,C;)
are computed and the closest clusters C.,;,Cy,; are merged.

procedure HierarchicalAgglomerativeClustering(D,k) :
// D ={di,da,....dn}

// start with N singleton clusters

C = {{d1},{d2},...{dn}};

do {
mi,mj = argmin (d(C;,C;)) over all (i,5) pairs in C
C’ = merge(Cimi,Crmyj);
remove Cy,;,C,; from list of clusters C;
add C’ to list of clusters C;

}
while (|C] > k);

return list of clusters C;

Fig. 9. Hierarchical Agglomerative pseudocode.

The algorithm continues until it reaches the desired number
of clusters k.

B. Inconsistency

We studied this algorithm’s implementation in three toolKkits:
Scikit-learn, R, and MATLAB. Our experiments have revealed
that Hierarchical clustering implementations are deterministic.
Therefore, we only focus on inconsistency.

a) Accuracy: We found 173 cases where the toolk-
its’ ARIs (accuracies) on the same dataset differ by more
than 0.1. In the top half of Table X we show the top-
5 datasets by accuracy gap between the three toolkits.
Four out of these five datasets come from the Gene
Expression for Oncology repository GEMLeR by Stiglic
and Kokol [22]: AP_Prostate_Lung, AP_Omentum_Prostate,
AP_Prostate_Kidney, and AP_Endometrium_Prostate.

We determined that one source of differences was the link-
age criterion (distance function), which was different for each
toolkit: Ward vs. Complete vs. Single for Scikit-learn, R, and
MATLAB, respectively. Since Ward is uniformly supported in
all three toolkits, we set the linkage to Ward, and report the
results in the bottom half of Table X. Using the same linkage
not only improves consistency, but also increases accuracy for
both R and MATLAB.

We also found an implementation difference so substantial
that it is impossible to control for by just changing input
parameters: R’s implementation is optimized for time via fast
distance computation (Nearest-neighbor chain algorithm [23]).
Per its authors [24], R is the only clustering toolkit to use
this distance computation method. Extricating the distance
computation code to force consistency with other toolkits
would be a substantial endeavor (as it is pervasive throughout
the implementation). We leave this endeavor to future work.

b) Mutual ARI: The mutual ARIs are presented in Ta-
ble XI. For bottom-5 consistencies, note the negative values
in default mode (top rows); the mean consistency across all
datasets was 0.14-0.41, which is way lower than DBSCAN
defaults (0.79-0.97) or Affinity Propagation defaults (0.95).

Controlling for linkage substantially improves consistency:
while some datasets’ mutual ARIs are around O (bottom rows
of Table XI) the mean mutual ARI has increased to 0.93-0.94.



TABLE X
ACCURACY FOR HIERARCHICAL AGGLOMERATIVE CLUSTERING: DEFAULT (TOP); WITH SCIKIT-LEARN’S DEFAULT LINKAGE Ward (BOTTOM).

Dataset Scikit-learn R MATLAB || Max Gap
Defaults I=Ward | I=Complete [=Single
synthetic_control -0.05 -0.05 1 1.05
AP_Prostate_Lung 0.89 -0.00 -0.00 0.90
AP_Omentum_Prostate 0.87 -0.00 -0.00 0.87
AP_Prostate_Kidney 0.85 -0.00 -0.00 0.85
AP_Endometrium_Prostate 0.85 0.00 0.00 0.85
mean (all 528 datasets) 0.11 0.12 0.11
[=Ward socmob 0.17 0.50 0.17 0.33
analcatdata_supreme 0.25 0.04 -0.06 0.31
corral 0.30 0.30 0.03 0.26
analcatdata_boxing2 0.01 0.19 0.02 0.17
vinnie 0.27 0.30 0.17 0.45
mean (all 528 datasets) 0.11 0.12 0.11
TABLE XI
BOTTOM-5 AND MEAN CONSISTENCIES FOR HIERARCHICAL AGGLOMERATIVE CLUSTERING.
Scikit-learn vs. R Scikit-learn vs. Matlab R vs. Matlab
Defaults mbagrade -0.11 | rabe_266 -0.06 | mbagrade -0.06
molecular-biology-promoters  -0.11 | diggle_table_a2 -0.05 | rabe_266 -0.06
planning-relax -0.10 | synthetic_control -0.05 | synthetic_control -0.05
tic-tac-toe -0.10 | lupus -0.04 | allbp 0.33
hepatitisC -0.08 | analcatdata_uktrainacc  -0.04 | parity5 -0.03
mean (all 528 datasets) 0.41 0.14 0.26
I=Ward tic-tac-toe -0.10 | mux6 -0.01 | optdigits -0.08
optdigits -0.08 | analcatdata_boxing2 -0.01 | mbagrade 0.01
mbagrade -0.02 | parity5_plus_5 0 | mux6 0
threeOf9 0 | car 0 | analcatdata_boxing2 0
profb 0 | threeOf9 0 | car 0
mean (all 528 datasets) 0.94 0.93 0.93
C. Actionable Findings A K—MEANS v

To conclude, our experiments have revealed that Hierarchi-
cal Agglomerative Clustering has deterministic behavior in
Scikit-learn, R, and Matlab. However, all three implementa-
tions are mutually inconsistent due to different default linkage;
setting linkage to “Ward” is an effective consistency measure.

VI. KMEANS

K-means forms clusters by assigning points to their closest
cluster center. Given initial “centroids,” K-means assigns each
point to the closest centroid, calculates the new centroids
(means of updated clusters), and repeats the process until
clusters are stable. While the choice of initial centroids is non-
deterministic, the iteration phase is deterministic. Therefore,
our strategy was to choose the same centroids for all imple-
mentations and study implementation-induced nondeterminism
and inconsistency, due to the iteration phase. We studied K-
means in four toolkits: Scikit-learn, R, Matlab, and Tensorflow.

A. Algorithm Overview

Figure 10 shows the algorithm’s pseudocode. K-means
has two phases: initialization and iteration. In the initializa-
tion phase, the algorithm is nondeterministic as it randomly
picks K points as initial centroids {C1,...,Ck}. In the
deterministic iteration phase, each data point is assigned to
the closest center C; and centers (), are recomputed (as
means of updated clusters). The iteration phase ends when
the clusters are not changing anymore (C,,, is not changing);
or when the objective (sum of squared Euclidean distances

// Input: dataset S = z1,..

// start with empty clusters
S1=0;...; Sk =0;

// INITIALIZATION PHASE: initialize centroids randomly

N A{C....Cr}=A{ar,. .., Trp}

., Tn, number of clusters K

iter = 0;

do {// ITERATION PHASE
// Assignment step: add each point x; to its closest centroid
for (i=1; i <=n;i++){
// “tie” exists when there are at least one minimum

K
m =argmin 3 |lz; — Cj|
Jj=1
Sm = Sm U {1‘1}
// Update step: recompute centroids to be the mean of the
updated clusters
for (j=1; ] <= K;j++) {
[Cmn |
Crm = (3 @m)/|Cml
=1

}

iter ++;

while ((clusters still changing || objective > minObjective)
&& iter < MAX_ITER);

Fig. 10. K-means pseudocode.

of observations from their cluster centers) is minimized; or
when a predefined maximum number of iterations is reached
(iter >MAX_ITER). Therefore, for the same starting points, we
would expect different implementations to converge to the
same result. However, upon examining the source code, we



have found that different toolkits make different choices (e.g.,
stopping conditions or tie-breaking) that introduce inconsis-
tency. Specifically, K-means is NP-hard when seeking a global
optimum, so toolkits employ heuristics which substantially
improve efficiency, but risk converging to a local optimum.

B. Inconsistency

We show the progression toward stronger consistency,
starting from default parameters and then applying stronger
controls: Table XII shows the number of datasets that toolkits
disagree on, while Table XIII shows the mean mutual ARIs
and the strongest disagreements.

a) Defaults: The lowest consistencies are between R and
other toolkits: ARIs as low as -0.06 for four datasets, and
disagreements on 369-376 datasets. This is due to R’s default
implementation, including stopping conditions.®

b) Stop conditions: The most important consistency pa-
rameter is MAX_ITER. By default MAX_ITER=10 for R, Matlab
uses MAX_ITER=100 and Scikit-learn uses MAX_ITER=300. Since
we found that 96.9% of datasets finish in 40 iterations or less,
we set MAX_ITER=100 for all toolkits. Table XII shows that
R’s disagreement with the other toolkits reduces substantially,
from 369-370 disagreements to just 15-21; Table XIII shows
that the mean mutual ARI increases from 0.75 to 0.99.

Scikit-learn uses a parameter “tolerance,” i.e., the relative
difference in objectives between two iterations, as one of the
stop conditions. By default, TOL=0.0001 in Scikit-learn; its
equivalent would be TOL=0 in the other toolkits. We found
that setting Scikit-learn’s TOL=0 yields a small increase in
consistency; due to the small magnitude of this improvement
(visible at the third decimal place) we omit it from Table XII.

c) “Tie-breaking” at first iteration: Even after the afore-
mentioned controls, we still observe inconsistencies. For ex-
ample, R and Scikit-learn have inconsistencies on 18 out
of 497 datasets; Tensorflow and R have inconsistencies on
21 out of 497 datasets. Most of these inconsistencies are
visible after the first iteration. When we compared label
assignments between toolkits after the first iteration, we found
that toolkits break “ties” (i.e., assign observations that have the
same Euclidean distances to cluster centers) differently. For
example, Scikit-learn assign points with ties to the cluster that
has the higher index, that is quite arbitrary tie breaking; Matlab
resolves ties by keeping last step’s assignments — it will prefer
not to move a point if it becomes tied. These tie breaking-
induced inconsistencies persist after the first iteration, as later
steps are deterministic. Therefore, our next control was to
avoid starting points that have equal distance to points to
be clustered. This measure increased inconsistencies for 25
datasets; bottom-5 consistencies are shown in the last 6 rows
Table XIII. Note that mutual ARIs are at least 0.99.

Table XII shows 6-23 datasets that still have inconsistencies
after controlling for first iteration tie-breaking. These incon-
sistencies are due to inherent ties in datasets (certain points

R uses “Hartigan-Wong” heuristics [25] by default, whereas Scikit-learn
and Matlab use “Lloyd” heuristics [26].

are equidistant to cluster centers) and cannot be avoided by
changing parameters or starting points.

C. Actionable Findings

To conclude, our experiments have revealed that Scikit-
learn, R, Matlab and Tensorflow’s K-means implementations
are deterministic, but mutually inconsistent due to heuristics,
stop conditions, and tie-breaking. These findings suggest that
controlling for MAX_ITER and tie-breaking strategy are effec-
tive measures for achieving high consistency.

VII. RELATED WORK

Testing, verification, and validation of Machine Learn-
ing implementations is an emerging area. Prior efforts have
focused on supervised learning approaches, mostly Neural
Networks (NNs)/Deep Learning [27], rather than unsupervised
learning (e.g., clustering). While NNs are popular and success-
ful, challenges such as limited training data, unlabeled data,
or interpretability” make “traditional” clustering preferable.

Yin et al. [28] and Musco et al. [29] have used statistical
tests to compare variation across runs and toolkits for clus-
tering algorithms. They ran their approach on 7 algorithms
(DBSCAN, Affinity Propagation, Hierarchical, K-means, K-
means++, Gaussian mixtures, Spectral). Their goal was to
characterize accuracy distributions via descriptive statistics,
i.e., their efforts were observational: no attempt was made to
explain what causes differences, or to control for parameters
and observe the effect of these controls. In contrast, we look
into cause and effect. First, what causes differences across runs
or toolkits? Second, what changes (and how) after we control,
e.g., for parameters. We use a substantially higher number of
datasets (528 vs. their 162) which strengthens the relevance
of our statistical findings.

Kriegel et al. [30] have also questioned the assumption that
toolkits are interchangeable. They have compared (mostly)
nondeterministic algorithms and a wide range of toolkits, but
in terms of runtime efficiency. Our focus is different: root
causes of toolkits’ accuracy differences. They used a single
“master” dataset of S00K Twitter locations, from which they
sampled smaller datasets. We used a much broader, 528-
dataset setup.

In the Machine Learning community, efforts have focused
on improving clustering performance. For example Ben-Hur
et al. [31] have experimented with varying the /K used in
hierarchical clustering to find a value that yields the highest
stability (a condition stronger than determinism). To improve
the performance of K-means, Fred [32] has proposed “voting
K-means”, that is, using a majority-vote strategy to form more
accurate clusters by running k-means repeatedly and eliminat-
ing “dissenting” runs. They varied K, but experimented on
two datasets only. Our focus is different — exposing toolkit-
induced nondeterminism; our dataset range is much broader.

"In domains such as healthcare interpretability “is crucial for convincing
the medical professionals about the actions recommended” [8].



TABLE XII
NUMBER OF DATASETS THAT HAVE INCONSISTENCIES FOR K-MEANS FOR EACH CONTROLLING STEP.

#Datasets TF vs. R | TF vs. Scikit-learn | TF vs. Matlab | R vs. Scikit-learn | R vs. Matlab | Scikit-learn vs. Matlab

Default parameters 369 82 29 376 369 58

Fixed ITER=100 21 31 29 18 15 4

Control first-iteration tie 15 23 22 16 13 6
TABLE XIII

BOTTOM 5 CONSISTENCIES FOR K-MEANS FOR EACH CONTROLLING STEP.

TF vs. R | TF vs. Sk | TF vs. Matlab | R vs. Sk | R vs. Matlab | Sk vs. Matlab

Default parameters analcatdata_vehicle -0.02 0.43 0.43 -0.02 -0.02 1
analcatdata_chlamydia -0.01 0.64 0.64 -0.01 -0.01 1

rabe_266 -0.01 0.64 0.64 -0.01 -0.01 1

AP_Breast_Kidney 0.00 0.76 0.76 0.00 0.00 1

fri_c4_100_50 -0.09 1 1 -0.09 -0.09 1

mean 0.75 0.99 0.99 0.75 0.75 1
Fixed ITER=100 analcatdata_vehicle 1 0.43 0.43 0.43 0.43 1
monks-problem3 1 0.46 1 0.46 1 0.46

glass 0.59 0.59 0.59 1 1 1

rabe_266 1 0.64 0.64 0.64 0.64 1

analcatdata_boxing1 1 0.69 0.69 0.69 0.69 1

mean 0.99 0.98 0.99 0.99 0.99 1
Control first-iteration tie | solar-flare 0.31 0.58 0.58 0.43 0.43 1
analcatdata_vehicle 1 043 043 0.43 0.43 1

led7 0.41 0.83 0.82 0.40 0.42 0.90
LED-display-domain-7digit 0.56 0. 73 0.95 0.56 0.54 0.69

cleveland-nominal 0.52 0.92 0.92 0.52 0.52 1

mean 0.99 0.99 0.99 0.99 0.99 1

VIII. CONCLUSIONS

Testing of Machine Learning implementations is an emerg-
ing area. We focus on deterministic clustering algorithms. In
theory, these algorithms should produce the same clustering
solution across runs and toolkits. In practice, we discov-
ered that this assumption breaks, leading to nondeterministic
implementations and inconsistency across toolkits. For each
algorithm, we were able to expose the diverse root causes of
nondeterminism or inconsistency: default parameter settings,
noise insertion, distance metrics, termination criteria. Control-
ling for these sources can eliminate nondeterminism and bring
several different implementations of the same algorithm more
in line with each other.

We believe that our approach and actionable findings have
the potential to improve clustering reproducibility as well as
reliability, which benefits a wide range of clustering users.
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