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Abstract—Linearizability of concurrent data structure imple-
mentations is notoriously hard to prove. Consequently, current
verification techniques can only prove linearizability for certain
classes of data structures. We introduce a generic, sound, and
practical technique to statically check the linearizability of con-
current data structure implementations. Our technique involves
specifying the concurrent operations as a list of sub-operations
and passing this specification on to an automated checker that
verifies linearizability using relationships between individual sub-
operations. We have proven the soundness of our technique. Qur
approach is expressive: we have successfully verified the lineariz-
ability of 12 popular concurrent data structure implementations
including algorithms that are considered to be challenging to
prove linearizable such as elimination back-off stack, lazy linked
list, and time-stamped stack. Our checker is effective, as it can
verify the specifications in less than a second.

I. INTRODUCTION

Linearizability, introduced by Herlihy and Wing [1], is the
standard form of correctness for concurrent data structure
implementations. Linearizability means that the entire observ-
able effect of each operation on a concurrent data structure
happens instantly, i.e., the effect of each operation is atomic.
Concurrent implementations of abstract data structures (stacks,
queues, sets, etc.) are becoming more and more complex as
implementations that increase the degree of concurrency are
identified. This in turn is making linearizability verification
harder. Even recent, state-of-the-art techniques (e.g., [2], [3])
lack generality as they are limited to specific classes of
concurrent data structures — so far no technique (manual or
automatic) for proving linearizability has been proposed that
is both sound and generic. To this end, we present a generic
technique for proving linearizability that is independent of any
properties of the concurrent data structure.

Prior work on atomicity verification [4], [5] has utilized the
concept of moverness [6]. Moverness has also been used to
verify linearizability of concurrent operations [7]. The main
idea is to prove that individual atomic actions in a concurrent
operation can commute with atomic actions from other threads.
The operation is transformed through a series of steps to reach
an equivalent single atomic action. The moverness requirement
of an action is global with respect to all other atomic actions
present in the program. This makes moverness too strong a
requirement for complex concurrent operations.

Instead, we present a verification technique which can be
applied to a wide range of concurrent data structure im-
plementations. A concurrent execution of operations can be
modeled as interleaved sequences of corresponding atomic
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sub-operations. The novelty of our approach is that:

1. We can express the set of all sequences allowed by
an implementation in terms of relationships between pairs of
individual sub-operations.

2. Given the properties of sub-operation pairs, we can
statically verify if all the sequences of sub-operations allowed
by the implementation can be mapped to an equivalent non-
interleaved sequence of sub-operations while maintaining the
order of non-overlapping operations, i.e., linearizability.

Our technique consists of (1) a specification language that
allows concurrent data operations to be specified simply as se-
quences of atomic sub-operations and (2) a static checker that,
given the relationship between the sub-operations, determines
if the implementation is linearizable. If the linearizability proof
fails, the static checker returns a sequence of sub-operations
that could not be linearized.

We have applied our technique to 13 popular concurrent data
structure implementations and were able to verify 12 of them
(as our approach is sound, the one false positive is explained
in Section VIII). The evaluation shows that our technique is
generic, practical, and efficient. Our contributions include:

o A model to express execution history of concurrent
operations in terms of static properties of atomic sub-
operations (with no limit on the number of concurrently
executing operations).

o A static linearizability checking technique that, given
a concurrent data structure specification in terms of sub-
operations and relationship of in-between sub-operations,
automatically checks linearizability.

o A concurrent data structure specification language
that allows the user to easily and concisely express con-
current operations as sequences of atomic sub-operations.

e A proof of soundness for our technique.

o An evaluation on 13 well known concurrent data structure
implementations — 12 were verified to be linearizable.

II. SYSTEM MODEL AND LINEARIZABILITY

A concurrent data structure implementation consists of a
shared state (defined by shared variables) and methods which
operate on the shared state. An execution consists of a variable
number of threads, each executing one of the defined methods.
An operation is a successful execution of a method. The
concept of operations is native to linearizability of concur-
rent implementations. Most of the prior work on concurrent
data structures with fixed linearization points establish the



linearizability of the data structure by locating the linearization
point of the operations present in the implementation. For
example, Michael and Scott [8] have proven their queue’s
linearizability by locating the linearization points of enqueue,
dequeue_empty, and dequeue_non_empty operations. Hendler et
al. [9] have also used the operations’ linearization points for
proving linearizability. Operations are sequential compositions
of atomic sub-operations. Each sub-operation (atomic) « has
the form < g > ¢, where g is a pre-condition to the sub-
operation. A sub-operation can execute only at a state which
satisfies g, while ¢ is the set of reads and writes which get
executed when « gets executed. Sub-operations can be global
or local. A global sub-operation involves reading or writing
shared variables (or references). Local sub-operations are used
just for the sake of completeness and do not play any role in
proving linearizability. Section IV gives a detailed language
along with examples to help user express concurrent data
structures implementations as a sequence of sub-operations.
A. Execution Model

We assume a sequentially consistent memory model. The
program state s is the current valuation of the variables (both
shared and local) present. The program state changes with
execution of sub-operations belonging to operation instances.
Each operation instance is a unique invocation of one of
the operations defined in the specification. Each operation
instance has a unique operation instance id from the set O;4.
We represent sub-operation a(< g > t) being executed as a
part of operation instance v as a[v]. g[v] and t[v] represent
the corresponding pre-condition and sub-operation body. Note
that we do not use thread id instead of operation instance id
because more complicated data structures ([8], [9]) can have
an operation execution distributed among multiple threads.
The atomicity and error conditions are given in Figure 1. We
use the notation (s1, Hy, ) — (s2, Hz) to indicate that sub-
operation « executed at program state s; takes the program
state to sy while the execution history changes from H; to H.
The definition ATOMIC states that if the current program state
s1 satisfies the sub-operation pre-condition g[v], (v € Oyq),
represented by s = g[v], the program state is modified with
transition t[v]. The execution history H; gets appended with
sub-operation a[v]. The ERROR definition states that the sub-
operation « cannot successfully execute at a program state
where the corresponding pre-condition is not satisfied.

’(817H17O¢) — (827 HQ) ‘
siEglol — (s1,1[v]) = 2
ATOMIC (s1,H,alv]) = (s2, H.afv])
51 = gl
ERROR (s1, H, a[v]) — (error, H)

Figure 1. Atomicity and error definitions.
B. Histories

Definition 1. A history H is a finite sequence of sub-
operations where the sub-operations corresponding to the same
operation instance follow the program order.

A history H is sequential if the sub-operations from the
same operation instance occur together. A sequential history

is legal if it follows the abstract data structure behavior. A
history H in which the preconditions for all the sub-operation
instances present in the history are satisfied is valid with
respect to the implementation (naturally, we call “invalid” a
history that is not valid). The following Venn diagram shows
the relationship between valid, invalid and sequential histories.

Invalid Histories

Valid
Histories

Histories

Two valid execution histories are equivalent if they contain
the same sub-operation instances and the program state visible
to a sub-operation instance is the same in both the histories.
C. Linearizability

Linearizability requires every execution history to be equiv-
alent to some legal sequential history that preserves the order
of non-overlapping operations in the original history.

Many techniques are available for checking the correctness
of a sequential implementation with respect to the abstract data
structure (e.g., [10]). Taking advantage of this we make the
following safe assumption in our technique:

Assumption 1. Every valid sequential history with respect to
the implementation is a legal sequential history.

In other words, we assume that all sequential executions
of the implementation are correct. With this assumption, our
linearizability definition is:

Definition 2. An implementation is linearizable if for any
valid history there exists some equivalent valid sequential
history such that the order of non-overlapping operations in
the two histories is the same.

IT1I. OVERVIEW AND EXAMPLE

We illustrate our technique on the MS non-blocking
queue [8]: a singly linked list-based queue with three oper-
ations, initialize , enqueue, and dequeue (Figure 2). Each queue
node has next and value fields. Enqueue first allocates a new
node then reads the tail pointer and sets the next pointer of the
end node to point to the newly allocated node; the final step
in the process is to set the tail pointer to the new node. Any
thread operating on the list can set the trailing tail pointer.
Dequeue reads head and tail pointers then checks if both point
to the same node. If head and tail point to the same node, i.e.,
the queue is empty, dequeue returns false; otherwise, dequeue
reads the head node’s value and updates the head pointer.

a) Specifying concurrent operations: The user specifies
the concurrent data structure’s operations as a sequence of
atomic sub-operations. Let us consider the enqueue method;
the 1oop in the method leads to an unbounded number of
execution paths. We leverage the notion of pure loops ([11],
[4]) to transform the loop to its last iteration. Figure 3 column
1 shows one of the possible loop free execution paths of the
enqueue method. Figure 3 column 2 shows CAS (Compare and
Swap) replaced with corresponding sub-operation < g > t
format. The next var in line 5 and 6 is a local variable



1: dequeue(Q:pointer to queue, pvalue:int): boolean
1: enqueue(Q:pointer to queue, value:int) 2: loop
2: node = new_node(); 3: head = Q—Head;
3 node—value = value; 4: tail = Q— Tail;
1: typedef struct Node_t * Node 4 node—next = NULL; 5: next = head—rnext;
2: struct Node_t{ 5 loop ) 6:  if head == Q—Head then
int value; 6 tail = Q—Tail; 7: if head == tail then
Node next; 7 next = tail—next; 8: if next == NULL then
8 if tail == Q—Tail then 9: return FALSE;
3: struct Queue{ 9 if next == NU_LL then 10: end if
Node Head, Tail; 10 if CAS(&tail— next, next, node) then 11: CAS(&Q—>Tail, tail, next);
1EQ; 11: break; 12: else
12: end if 13: pvalue = next— value;
1: initialize(Q: pointer to queue) 13 else 14: if CAS(&Q—>Head, head, next) then
2 node = new_node() 14 CAS(&Q—>Tail, tail, next); 15: break;
3:  node—next = NULL 15 end if 16: end if
4:  Q—Head = Q—Tail = node 16:  end if 17: end if
17: " endloop 18:  endif
18 CAS(&Q—Tail, tail, node); 19:  endloop
20: free(head)
21: return TRUE;

Figure 2. Michael and Scott non-blocking concurrent queue [8].

. node tail = Q—tail;

. node next = tail—next;

. assume (tail == Q—tail);

. assume (next == NULL);

. <tail—next == next>
tail—next = X;

7. <Q—tail == tail>

Q—tail = X;

. node X = new_node();

. node tail = Q—tail;

. node next = tail—next;

. assume (tail == Q—tail);
. assume (next == NULL);
. CAS(tail—next, next, X);
. CAS(Q—tail, tail, X);
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node tail = Q—tail;

assume (tail == Q—tail);

<tail—next == NULL>
tail—next = X;

<Q—tail == tail>
Q—rtail = X;

<Q—tail = tail; tail—next == NULL>
tail—next = X;

<Q—tail == tail>
Q—tail = X;

Figure 3. Expressing an operation as a sequence of atomic sub-operations.

TI. struct node{int value, node next};
T2. struct queue{node head, node tail};
Gl. queue Q ;
Enqueue (int val)
El. node X;
E2. node Z;
E3. 1 X = malloc node; ..
E4. 1 X.value = val;
ES. 1 X.next = NULL; ...C
Eo6. 1 < Q.tail == Z; Z.next == NULL;>
Z.next = X; ..d
E7. * < Q.utail == Z>
Q.tail = X; )
Dequeue_nonempty()
DI1. node X;
D2. 1 < Qhead == X; Q.tail # X; X.next# NULL;>
Q.head = X.next;
D3. 1 free X; ..g
Dequeue_empty()
DEl. node X;
DE3. 1 < Q.head == X; Q.tail == X; X.next == NULL;>

Figure 4. MS non-blocking queue [8] specification.

i.e., cannot be modified by other threads. Replacing the value
of next with NULL gives us column 3. The only possible
modification to Q—tail in the program is setting the next node
in the list. The value of Q—tail does not change between 4 and
6 because that would violate the pre-condition tail—next ==
NULL. Adding this pre-condition to the sub-operation gives
us column 4. Previous works on atomicity verification ([11],
[51, [4], [12], [13]) have detailed discussion about program
transformations required to express operations as sequences
of atomic sub-operations. We are skipping this discussion here
for brevity.

Figure 4 contains the MS queue specification in our lan-
guage. The user specifies data structures by declaring their
type name along with the fields. For example, line T1 declares
a type node which has two fields and line G1 declares a shared

variable Q of type queue. There are two different dequeue
specifications, Dequeue_nonempty and Dequeue_empty, which
correspond to the sequence of sub-operations for dequeue on a
non-empty queue and an empty queue, respectively. Figure 5
shows the global sub-operations that involve shared variables,
i.e., the global sub-operations of MS queue.

b) Pairwise ordering and reversibility: An ordered pair
of sub-operations cannot be part of a valid history if the
execution of the first sub-operation destroys the precondition
for the second one. For example, sub-operation d in Figure 4
line E6 cannot be followed by another instance of d because
the first instance sets the tail—next pointer to a non-null value,
invalidating the precondition for the second instance. Figure 5
shows all the pairs of sub-operations and their feasibility. In
our approach, a ! b means sub-operation a does not destroy
the precondition for b. The sub-operation execution order in a
feasible (pair-wise orderable) pair can be changed if changing
the order will not affect the value of shared or local variables.
We call this reversibility, denoted as a © b. The properties are
explained in detail in Section V.

A boundary case refers to a pair of sub-operations that
includes the last sub-operation of an operation followed by the
first sub-operation of an operation. Pair-wise orderable non-
boundary pairs lead to interleaving operations. Boundary pairs
are always defined as non-reversible. Pairwise reversibility for
non-boundary sub-operation pairs for MS queue is also defined
in Figure 5.

c¢) Trace transformation: An execution history formed
by moving sub-operations using the reversibility property is
equivalent to the original history. A valid concurrent his-
tory can be mapped to a valid sequential history using this
trace transformation. The order of non-overlapping operations
always remains the same during this process because the



Global sub-ops for Enqueue and Dequeue
Dequeue_nonempty()
Enqueue() N . . .
| < Q.ail == Z; Z.next == NULL;> ! <Q%2§dad_‘§ rﬁx . Qiail # X; - X.next7 NULL;> .
Z.next = X; ..d ’ -
k i1 —— .
<QQt;izill=_)E' Z:> R Dequeue_empty()
: > 1 < Q.head == X; Q.tail == X; X.next == NULL;> ..h
Pair-wise ordering

-did  df [if(Q.head # Q.tail)]  f f [Boundary case] Non-Boundary C Pair-wise

—dle eld [Boundary case] f Uh [Boundary case] don- oundary £-ases reversibility

-dlh el f [Boundary case] h 1 d [Boundary case] f dof

—ele fld [Boundary case] h ! h [Boundary case] fre fee

—elh fle

—-hle —hlf

Figure 5. Proving the MS queue linearizable.

boundary pairs are defined to be non-reversible. For example,
consider a valid history for the MS queue:
o di, fa, fs e, .
ceey dl, f27 €1, f3 ( using f3, ey =e1, f3 )
cery dl, €1, fg, f3 ( using fz, ey = el, f2 )

For a linearizable implementation, every valid concurrent
history can be mapped to an equivalent valid sequential
history using trace transformation. Our linearizability checker
in Algorithm 1 answers the question: “Given an ordering and
reversiblity specification, can all the valid histories (for un-
bounded number of concurrent operation instances) be mapped
to an equivalent sequential history using trace transformation?”

IV. SPECIFICATION LANGUAGE

We have designed a language to assist the user in expressing
concurrent data structure operations in terms of sub-operations.
Note that the language is not central to our technique — our
technique will work as long as concurrent operations can be
expressed as sub-operations with ordering and reversibility
properties. That said, we found the language made the task of
expressing sub-operations and finding the pair-wise ordering
and reversibility very easy. In this section we first define the
language and then demonstrate its use for expressing common
features in concurrent implementations.

A. Syntax

We provide the user with a simple C-like syntax, shown in
Figure 6. Specifications consist of an optional list of structure
declarations st, global declarations g and a list of operations
op. Each global declaration consists of a variable name var
and its type. Types can be int or struct, where structs have a
name sname and consist of a list of fields; each fields has a
name fname and a type.

Operations: Each operation op has a name oname, and
an optional argument (type var). Operation bodies opBody
consist of local variables, dList, and sub-operations, sList.

Sub-operation: A sub-operation specification has a
tmark followed by a pre-condition and a sub-operation body.
tmark marks the thread which executes the statement. A
tmark of 1 means that the thread invoking the operation
instance will perform the sub-operation. If a tmark is *,
it indicates that any thread can perform the sub-operation.
Specifying tmark for each sub-operation allows specifying
an operation which is distributed across multiple threads.

Specification sp stList g opList | g opList
Struct Decl stList = stList st| st
st == struct sname {l} ;
I == [ ,type fname | type fname
Type type == int| sname
Global Decl g == dList
Operation opList == opListop|op
op == opName opBody
opName == oname(dList) | oname
opBody dList sList
sList sList subOp | subOp
dList == dList decl | decl
Declaration decl = typevar ;| type var|];
subOp = tmark subOpBody
\ tmark < cList > subOpBody
|  tmark < cList >
tmark == 1|x
Pre-condition cList == cList condition ;| condition ;
condition = [lhsroprhs
subOpBody == subOpBody stmnt ;| stmnt ;
stmnt = wvar = malloc type | free var
| lhs = rhs
| READ lhs
LHS lhs == war |var . fname | var[index]
RHS rhs = ID|n|NULL|lhs
index n | var
Operators rop u= ==#[<|>|<|>
Integers n
Variable var
Struct Name sname
Field Name fname
Op Name oname

Figure 6. Syntax of Specification Language.
— An optional precondition to the sub-operation is composed
of a list of conditions, where each condition is a relational
expression involving a variable var, or field var.fname on lhs
and null, constant, variable, or field on rhs.
— A statement can be allocation or deallocation; malloc and
free statements are used for specifying local sub-operations.
Other possible statement forms involve assigning values to a
variable or writing a field. READ refers to reading of a field
or a variable.
— We use ID to identify the operation instance; ID is useful
in modeling locks, as explained shortly.



B. Modeling Synchronization Primitives

We now show how to model compare-and-swap (CAS),

fetch-and-increment (F&I), and locks, using our language.
Modeling Compare-and-swap: CAS can be modeled in
two different ways, depending on the implementation.

Case 1 - When the memory location being compared was
read or written before CAS statement and execution of the
CAS statement is conditionally controlled by an if statement.
In this case the CAS statement can be modeled as a sub-
operation with the if condition as the precondition and the
memory write as the body of the sub-operation. For example,
in Figure 2, the execution of the CAS statement on line
10 is dependent on the if conditions in lines 8 and 9. The
specification for the CAS statement is as follows:

1 < Q.tail ==7Z; Z.next == NULL;>
Z.next = X;

Case 2 - When the memory location being compared was
read or written before CAS statement and execution of CAS
statement is unconditional. In this case CAS statement can
be modeled as a sub-operation with no precondition and two-
statement body: the first statement reads/writes the location
being compared while second statement writes the memory
location. Figure 7 shows pseudocode excerpt from implemen-
tation of elimination back-off stack by Hendler et al. [9]. The
second row shows corresponding sub-operation specification.

him=collision[pos];

Pseudocode while(!CAS(&collision[pos].him,mypid))
him=collision[pos];
Specification T him = collision[pos];

collision[pos] = mypid;
Figure 7. Sample CAS specification from [9].

Modeling Fetch-and-Increment: F&I on a shared vari-
able x is modeled by a sub-operation with no precondition.
The body of the sub-operation consists of two statements,
first reading shared variable z in a local variable and second
incrementing x. Figure 8 left shows the pseudo code from the
enqueue operation in Herlihy and Wing’s queue [1] which uses
fetch-and-increment. The right side shows the specification in
our language — declaration of variables back and AR and the
enqueue operation.

int AR[ [;

int back;
enqueue(lv){ Enqueue(int 1v)
/*(Fetch and Increment)*/ int k;
(k, back) := (back, back +1); _ '
AR[K] := lv;} 1 k = back;

back = back + 1;
1 AR[k] = 1v;
Pseudocode Specification

Figure 8. Sample Fetch-and-increment specification from [1].

Modeling Locks: A lock can be modeled using our
specification language as a shared variable with a default value.
The locking sub-operations will look like

1 < lock == default_value; >
lock = ID;

where operation ID refers to a unique value identifying the
operation instance. Any sub-operation performed with the lock
acquired will have a precondition of the form:

< lock == ID;>
Unlocking takes the form:
1<lock == ID;>

lock = default_value;
V. PROVING LINEARIZABILITY

The number of possible valid histories for an implemen-
tation is directly proportional to the number of executing
concurrent operation instances. The number of valid histories
becomes intractable with the increase in the number of con-
current operation instances executing on the data structure.
We solve the problem of intractable number of histories by
breaking the history down into basic building blocks, sub-
sequences of two sub-operations. We then argue about all the
histories in terms of properties on these building blocks. We
call (a,b) a sub-operation pair, where a and b belong to
different operation instances; for brevity, we will heretofore
drop the parentheses when referring to pairs. Note that a and
b can be the same sub-operation. The number of possible pairs
for an implementation with n sub-operations is n2.

We define the property of pair-wise ordering as follows:

Definition 3. Figure 9 shows how we determine if a sub-
operation pair is orderable. The rule states that a sub-operation
pair ay, g is not pairwise orderable (denoted by —ay ! aig)
if after executing «;, the pre-condition for as is not met;
otherwise oy ! as.

Vs, Vu,v € Oiq,u # v
(s, H,a1[u]) — (s2, H2) (s2, Ha, a2[v]) — (error, Hy)

-l o

Figure 9. Pair-wise ordering.
For example, consider the sub-operation d of MS queue’s
enqueue (Figure 5):
1 < Q.tail ==Z; Z.next == NULL;>
Z.next = X;

The pre-condition states that Q—tail—next should be NULL.
Now consider the pair d,d (dy, dsy for clarity). The execution
of dy sets the value of Q—tail—next to a non-NULL value.
This invalidates the pre-condition for sub-operation instance
ds. Hence d, d is not pair-wise orderable; i.e., ~d  d.

Figure 10 states the rule for determining sub-operation pair’s
reversibility.

Definition 4. A sub-operation pair o1, is reversible (de-
noted by a3 © ap ) iff

1. o1 Lo and ag ! v and

2. Given a program state, the final program state is the same
irrespective of the order of execution of c; and .

Note that pair reversibility is different from moverness prop-
erties (left movers and right movers). The left and right mover
properties of an atomic sub-operation are very restrictive as the
sub-operation should be commutative with respect to every
sub-operation present in the program. Reversibility on the
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azlag

(s, H, a1 [u]) — (s2, H2)
(SQ,HQ,OQ[’U]) — (83,H3)

Vs, Vu,v € Oiq,u # v

(;SvHv OCQ[U]) - (SévHé)

(s5, Hy, cn[u]) — (85, Hy) S3 = 54

a1 © a2

Figure 10. Pair-wise reversibility.

other hand is a property on a single sub-operation pair. [12] has
discussed that movers fail to prove atomicity in the presence
of the ABA problem [14]; reversibility, on the other hand,
enables our technique to handle the ABA problem.

Pairs can also be conditionally orderable. For example,
consider the pair d, f, (Figure 5) where sub-operation d is:

1< Qtail] == Z; Z.next == NULL;>
Z.next = X;
and sub-operation f is:
*< Q.head == X; Q.tail # X; X.next# NULL>
Q.head = X.next;
d f only if Q.head#Q.tail.

We consider a pair orderable, if it is orderable for any
possible values of the variables involved.

The reversibility of a conditionally orderable pair is defined
under the same conditions for which it is orderable. For
example, reversibility for pair d, f (mentioned above), will be
calculated with the premise that Q.head#Q.tail. Reversibility
of a pair is decided conservatively. If the reverse order of
execution is not equivalent to the original pair under any
possible condition (which is satisfied by the ordering condi-
tion), we deem the pair to be non-reversible. We found that
the conservative definition of reversibility is not sufficient to
handle complex interactions of operation instances. We explain
in Section VI how to handle such complex cases.

In order to preserve the order of non-overlapping operation
during the trace transformation, we have used the following
simple technique. A pair formed by last sub-operation of any
operation and the first sub-operation of any operation (a.k.a
boundary pair) is always set to be non-reversible. This insures
that the order of non-overlapping operations in a history will
not change when moving around the sub-operations using re-
versibility property. Given the pairwise ordering and pairwise
reversibility of all possible pairs of sub-operations, we express
a valid history as follows:

Definition 5. A valid history H (sequence of sub-operations
following program order) is defined as follows:

1. For any sub-sequence a,b of H, either a and b belong to
same operation instances, or a ! b and

2. For any sub-sequence a,b of H, where a and b belong to
different operation instances, if a & b then the history formed
by reversing the order of @ and b in H is also a valid history.

The equivalence of histories is defined in terms of pairwise
reversibility:

Definition 6. Two valid histories H and H’ are equivalent,
denoted H = H’, iff H* can be formed from H by reversing
the pairs present in H using pairwise reversibility.

Using this definition of equivalence of history, we redefine
our problem of checking linearizability as follows:

Definition 7. An implementation is linearizable iff all valid
histories with respect to the implementation can be mapped
to some sequential history by changing the order of pairwise
reversible sub-operations.

Note that the order of non-overlapping operations will
always be preserved because boundary pairs are not reversible.

Algorithm 1 Checking Linearizability

: Input: S: Set of Operations

: Sub(S):Set of all sub-operations

first(S): set of first sub-operations for each operation in S

: T is the set of all possible prefix sequences for operations

next(x), X€ I : next sub operation in the operation after x

: x€ I, yelUuSub(S), x.y: sequence formed by concatenating y after x
1 x€ I, yeluSub(S), xty iff x.y is a valid history

x€ [, x is a proper prefix, yelUSub(S), xOy iff x.y = y.x

x€ I, x is a complete operation, yeSub(S), yé¢first(S), xOy iff x.y = y.x
10: x€ I, x is a complete operation, y€l, —-x8y

11: x€ I, x is a complete operation, yESub(S), y€&first(S), -xOy

12: Check_Linearizability()

13: ret = TRUE

14: for all x€ I, x is a proper prefix do

15: ret = ret && Check(x)

16: end for

17:  RETURN ret

18: Check(x)

19: for all y € Closure(x) do

VRN R LN

20: if yinext(x) && —yOnext(x) then
21: RETURN FALSE

22: end if

23: end for

24. RETURN TRUE
25: Closure(u)

26 C={¢}

27: for all we [; st ulw && —u © w do
28: C=CUw

29: end for

30: for all z € C do

31: for all we I; st 2w && z © w do
32: C=CUw

33: end for

34: end for

35:  RETURN C

Algorithm 1 presents our linearizability checking approach.
The input to the algorithm is the set of operations, corre-
sponding sub-operation sequences, pair-wise ordering as well
as reversibility for each possible pair. We start by initializing
set I with all prefixes of operations (line 2). The prefix of
an operation o is a partial sequence of sub-operations starting
from the first sub-operation of o following program order. The
prefix set for an operation represented by a, b, c (where a, b
and c are the sub-operations) is {a, ab, abc}.

We define the ordering for a prefix pair (x,y — x and y
€ I) simply by checking if the concatenated sequence of z
and y is a valid history with respect to the input ordering and
reversibility specifications (line 5). Reversibility for a prefix
pair (x,y — = and y € I) is defined by the equivalence of
two histories formed by reversing the order of x and y (line



1: type E{ 1: bool remove(int k)
int mark; 2:  bool restart = true, retval;
int key; 3 while (restart)
E next; 4 EXE p,c = locate(k);
5 atomic{
2Z2EHT 6: if p.next == ¢ && !p.mark then
1: ExE locate(int k) 7 restart = false;
2: Ep=H; 8 if c.key == k then
3: E ¢ = p.next; 9 c.mark = true;
4 while(c.key < k) 10: p-next = c.next;
5: p=c; 11: retval = true;
6: ¢ = p.next; 12: end if
7: endwhile 13 else
8: return p,c; 14 retval = false;
1: bool contains(int k) 15 end if
2: EXE p,c = locate(k); 16 )
3:  bool b = (c.key == k); 17 endwhile
4:  return b; 18 return retval;

1: bool add(int k)

2: bool restart = true, retval;

3 while (restart)

4: EXE p,c = locate(k);

5:  atomic{

6: if p.next == ¢ && !p.mark then
7 restart = false;

8 if ckey # k then

9

: E t = alloc(E);
10: t.mark = false;
11: t.key = k;

12: t.next = ¢;
13: p-next = t;
14: retval = true;
15: end if

16: else

17: retval = false;
18: end if

19:

20: endwhile

21: return retval;

Figure 11. ORVYY set [15].

6). The ordering and reversibility between a prefix sequence
and single sub-operations is defined in a similar manner (lines
5,6,7). Lines 8 and 9 state that two non-overlapping operations
are non-reversible.

The closure of a prefix u (Closure(u)) is the set of all
prefixes v that can follow « in a valid history (lines 25-35)
and the order of execution of w and v cannot be reversed.
Complexity of calculating Clousure(u) is O(n?), where n is
the total number of prefixes. Our algorithm checks if for each
proper prefix x, for each prefix y that can occur in-between
z and next(z), the prefix y can be moved before x or after
next (z) in the sequence using the trace transformation (using
property of reversibility) (lines 18-24). If the check fails for
any prefix € I, the algorithm returns false otherwise it
returns true.

The algorithm returning true means all possible valid histo-
ries (for the input specification) are equivalent to some valid
sequential history with the same order of non-overlapping
operations. This in turn implies linearizability of the imple-
mentation using Definition 7.

In case of failure, our checker returns a valid history
(sequence of sub-operations) which cannot be mapped to a
sequential history. If the check on line 19 fails for prefix  and
y € Closure(x) then the failing valid history is the sequence
z,...,y, next(x). The dotted sequence is a sequence of prefixes
such that for any subsequence u,v u and v are in Closure(z),
wlv and —u S v.

VI. HANDLING COMPLEX OPERATION INTERACTIONS

We found that for complex concurrent operations, the order-
ing and reversibility of sub-operation pairs varies depending
on the relative values of the involved variables. There are
only finite number of ways in which two operations can
interact with each other i.e., how values of involved variables
can relate to each other. Linearizability of an implementation
can be checked by applying our technique using all possible
interactions of the involved operations. We illustrate this
process using O’Hearn et al.’s Lazy set [15] (ORVYY set).

T1. struct E{int mark, int key, E next};

remove()
. Rl. EP;
contains() R2  EC
Cl. EP : s
. EC R3. 1 READP;

R4. 1 C = P.next;

R5. 1 < P[next] == C; Pmark == 0; >
READ C.key;
C.mark = 1;
P.next = C.next;

C3. 1READP;
C4. 1 C = P.next;
C5. 1 READ C.key;

add()

Al. EP;
A2. FEC;
A3. FET,

A4, 1 READ P;
AS5. 1 C = Pnext;
A6. 1 < Pnext == C; Pmark == 0; >

READ C .key;
T.next = C;
Pnext = T;

Figure 12. ORVYY set [15] simplified specification.

Figure 11 shows the pseudo code for the ORVYY set. There
are three concurrent methods contains, remove, and add. The
specification for the ORVY'Y set, written in our language, is in
Figure 12. There are three operations: contains, remove, and
add. The operation contains (key not present) is equivalent to
the operation contains(key present). The operations add (key
present) and remove (key not present) are trivial extensions
and have been omitted for simplicity.

The interaction between operations depends on the relation-
ships among the shared variables involved in the operations.
For example, consider the interaction of operation add and op-
eration contains from Figure 11. The add operations involves
three variables (P,, C,, T,). The contains operation involves
two variables (P, C.). The two operations can interact with
each other in several ways. Each possible interaction is a result
of a different relation between the involved variables. The list
of possible iterations of confains and add is:

1. P.=P, and C. = C,
2.P.=P,and C. =T,
3. P, =T, and C, =C,

4. P.,C. and P,,C,, T, are not related



Contains()(P., Cc)-Remove()(Pr, Cr)
1. P. =P, C. =C,

2. P. =C,r

3. P;,C. and P, C, are not related

Remove()(Pr1, Cr1)-Remove()(Pr2, Cr2)
1. Crl = PT‘2
2. Pr1,Cr1 and Prao, Cro are not related

Add()(Pal ) Cal, Tal)'Add()(Pa% Ca27 Ta2)

1. Cq1 = Pa2

2. Pa1 = Pao, Cal =Ta2

3. Py1 = Tha2, Cul = Ca2

4. Py1,Ca1,Ta1 and Pga, Cyu2, Tea are not related

Remove(Pr, Cr)-Add()(Pa, Ca, Ta)

1. P =Py, Cr =Ty
2. Pr:Ta,Cr:Ca
3. P =C4

4. P.,Cyr and P,,Cq, T, are not related

Contains()(Pe, Cc) -Add)(Pq, Cq, Ta)
1. Po = Py, Ce =C4

2. P.=Py,Co=T,

3. P. =Ty Co=Ca

4. P.,C¢ and P,,Cy, T, are not related

Figure 13. Operation interactions for the ORVYY set.

Note that other cases are either infeasible or equivalent
to one of the aforementioned cases. For example, the case
where C, = P, is equivalent to case 4. All the interactions
between operations for the ORVYY set are listed in Figure 13.
We use multiple versions of the same operation to cover
every possible combination of interactions between operations
(each version is considered as a new operation). The ordering
and reversibility properties of the pairs corresponding to each
pair of operations are defined according to the premises. The
resulting ordering and reversibility definitions are fed to the
checker to verify if the implementation is linearizable.

VII. SOUNDNESS PROOF

Now we show that our linearizability check is sound. First
we show that for any input which passes the linearizability
check, all valid histories with respect to the input specifica-
tion are equivalent to some valid sequential history with the
same order of non-overlapping operations. We prove this by
induction over the length of valid histories, where length of
history refers to number of sub-operations in the history.
Base case: A sequence consisting of a single sub-operation is
a trivially valid sequential history.
Given: A history of length & maps to a valid sequential history
with order of non-overlapping operations preserved.
To Prove: Any valid history formed by appending a new
sub-operation to the history can also be mapped to a valid
sequential history with the order of non-overlapping operations
preserved.

In Figure 14 we start with a history of length £+ 1 formed by
appending sub-operation S,,41 from operation instance S to
a history of length k. The history of length k can be mapped
to a valid sequential history. The valid sequential history will
be a sequence of prefixes. The prefix S1.55 ... S, of operation
instance S denoted by P, will be present in the sequential
history. The history formed by replacing the history of length
k with its sequential counterpart falls under one of two cases:

o Case 1: P, is immediately followed by prefix X such that
P, © X. In this case, we reverse the order of P, and X
in the history (line 2).
o Case 2: P; is immediately followed by X such that - P;&
X and X is immediately followed by Y such that X &Y.
In this case, we reverse the order of X and Y in the
history (line 3).
We apply case 2 for prefixes down the sequence until no
further order change is possible. The result is a history where
P, if followed by prefixes, each of which is an element of
Closure(Ps) (line 4). Since our linearizability check guarantees
that for every element Z in Closure(P;) which can occur
before S;,+1, Z © Sp41. Using this property, we reverse
the oder of Z and S,,41. The final result will be a history
where sequence P;.S,, 11 is followed by a sequence of prefixes,
which is a valid sequential history (line 5). The order of
non-overlapping operations remains the same because the
boundary pairs is always non-reversible i.e., their order cannot
be changed.
Using Definition 7 we can say that any implementation
which holds Assumption 1 and passes the linearizability test
is linearizable with respect to the abstract data structure.

VIII. INCOMPLETENESS

Our technique is not complete, i.e., an implementation
which fails the linearizability test may or may not be non-
linearizable. Specifically, a linearizable implementation can
fail our linearizability test for two reasons:

1. Algorithms which do not preserve internal data
structure state: There are linearizable algorithms which do
not preserve the state of internal data structures when mapping
a history to a sequential history. An example of this case is
the Herlihy-Wing queue [1]. The queue is implemented using
an unbounded length array and a pointer storing the upper end
of the array. Let H' be the sequential history corresponding
to a concurrent history H; then the execution of H and H'
may leave the array with elements at different indexes.

Since our technique conserves the state of internal data
structures while mapping a history to sequential a history, it
returns False for the Herlihy-Wing queue.

2. Conservative definition of history (Definition 5):
A history H, as defined in Definition 5, is the superset of
all possible sets of histories allowed by an implementation.
Let S be the set of all possible histories categorized as
valid according to Definition 5, for a given implementation.
It is theoretically possible to design an implementation for
which S will include histories which can never be executed.
If the linearizability test fails for such histories then our
technique will result in a false positive. In such a case, the
non-linearizable sequence of sub-operations returned by the
linearizability checker can be manually verified to be non-
executable, i.e., impossible at runtime.

IX. EVALUATION

We have applied our technique on a number of popular
implementations of concurrent stacks, queues, and sets. Our



Replacing history of length k

Lo oo, 1Sn+1 = [5152.0.50 i, ]Sn4+1 by corresponding sequential history.
——
Valid history of Prefix S Valid sequence of S152...9 denoted by Ps
length k& prefixes
2. LPs XYoo Sny1 = XPsY..... Sn+1 if(Ps © X).
———
Valid sequence of
prefixes
3. P XY.... Snt1 = PYX.... Sn+1 if-Ps©X and X ©Y).
........ PsuoeoveoeSng1 = P21 7o 2y St where Z; € Closure(Ps) for 1 <1 <wu
5. = e PSSn+1Z1Z2 ........ Zu VZ S Closure(PS), Z I Sn+1
=76 Sn+1
Figure 14. Proving soundness of linearizability check by induction.
1 2 3 4 5
Data Structure Operations # Sub-ops | Time (ms) | Passes Check
MS non-blocking queue [8] Enqueue, Dequeue(empty), Dequeue(non-empty) 4 5 Yes
MS two-lock queue [8] Enqueue, Dequeue(empty), Dequeue(non-empty) 11 9 Yes
DGLM non-block. queue [16] | Enqueue, Dequeue(empty), Dequeue(non-empty) 4 5 Yes
Herlihy-Wing Queue [1] Enqueue, Dequeue 5 3 No
Treiber’s stack [17] Push, Pop(empty), Pop(non-empty) 5 3 Yes
L . o Push(eliminating), Push(eliminated), Pop(eliminating), )
Elimination back-off stack [9] Pop(eliminated), Push (normal), Pop (normal) 20 14 Yes
Time-stamped Stack [18] IP;llilsll)l(normal), Push(eliminated), Pop(eliminating), Pop (nor- 10 ] Yes
HHLMSS Lazy set [19] Contains, Remove(key present), Add (key not present) 23 29 Yes
Contains, Remove(key present), Remove(key not present),
VY CAS set [20] Add(key present), Add(key not present) 20 3 Yes
] Contains, Remove(key present), Remove(key not present), )
VY DCAS set [20] Add(key present), Add(key not present) 19 3 Yes
) Contains, Remove(key present), Remove(key not present), ]
ORVYY set [15] Add(key present), Add(key not present) 15 19 Yes
Pair snapshot [21] Read-pair, write 5 3 Yes
RDCSS [22] RDCSS, RDCSS_Read, CAS_Write 5 4 Yes

Table T
CHECKING LINEARIZABILITY OF DIFFERENT CONCURRENT DATA STRUCTURE IMPLEMENTATIONS.

static checker is a C++ implementation of Algorithm 1 running
on an Intel(R) Xeon(R) CPU E5607 @ 2.27GHz with 16
GB RAM, Linux kernel version 2.6.32. Table I presents our
findings. For each benchmark, the table reports operations we
considered for the implementation (column 2) and the total
number of sub-operations across all operations (column 3).
Column 4 gives the time taken by our static checker took (in
milliseconds). Column 5 indicates if the benchmark passed
or failed the check. We have kept the granularity of sub-
operations limited to single reads, writes, and synchronization
primitives. The granularity can be easily increased for trivial
cases (by combining consecutive sub-operations).

A. Benchmarks

The MS non-blocking queue was our running example. MS
two-lock queue is the two-lock based queue from the same
paper [8]. There are two methods described in the algorithm,
enqueue and dequeue. The dequeue method corresponds to
two operations, one for the successful dequeue and the other
for the empty-queue dequeue.

DGLM non-blocking queue [16] is a modified version of
the MS non-blocking queue. The specification for the DGLM
non-blocking queue varies from the MS non-blocking queue
in terms of pre-condition for the sub-operations. The sub-
operation ordering and reversibility remain the same for both
the benchmarks.

Herlihy-Wing queue is an array-based queue described in
the original linearizability paper [1]. The Dequeue method for
an empty queue never terminates (that is why we have con-
sidered only the successful dequeue operation in our check).
As described in Section VIII, our technique fails to prove the
Herlihy-Wing queue linearizable.

Treber’s stack [17] is the simplest form of a non-blocking
concurrent stack algorithm. It is a linked-list based implemen-
tation, and the operations — Push, Pop(empty), and Pop(non-
empty) — are performed using CAS.

Elimination back-off stack [9] is an elimination-based
lock-free stack. Elimination refers to canceling out concurrent
push and pop operations without modifying the central data
structure. The elimination process uses two auxiliary arrays.
A pair of concurrently executing push and pop are eliminated.
There is no sequential execution equivalent for such a case. We
handled this case by distributing the sub-operations between
eliminated and eliminating operations. This way there exists
a sequential execution equivalent of the two eliminated oper-
ations. The implementation supports push and pop methods
on the stack. The elimination parts leads to four operations:
push (eliminating), push (eliminated), pop (eliminating), and
pop (eliminated).

Time-stamped stack [18] is a linked-list based stack where
each thread has its own linked list, using timestamps to avoid



total ordering in concurrent stack operations; it also uses
elimination to increase performance. The stack supports push
and pop methods. The implementation has four operations,
push(normal), push (eliminated), pop (eliminating), and pop
(normal). We have not considered the stack empty check for
this implementation. In addition, the pop operation is limited
to setting the deleted marker which is associated with each
node. Finally, we have not considered the removal of the node
from the linked list.

HHLMSS Lazy set [19] is a linked-list based set which
uses locks. Each node has a lock associated with it. The
implementation supports three methods: contains, remove and
add. The contains method is wait-free. The operations in the
implementation that we have considered are contains, remove
(key present), and add(key not present).

VY CAS set and VY DCAS set [20] are linked-list
based set algorithms which use Compare-and-swap (CAS) and
Double Compare-and-swap (DCAS) primitives for synchro-
nization. The contains method is wait-free. The operations
involved in the implementation are contains, remove (key
present), remove (key not present), add (key-present) and
add(key not present).

ORVYY set [15] is also a linked-list based set which uses
a marked bit for marking deleted nodes; it has been discussed
in detail in Section VI.

Pair snapshot [21] reads two variables atomically in the
presence of concurrent writes.

RDCSS [22] is an atomic multiword compare-and-swap. It
works in presence of RDCSS read and CAS based writes.

B. Discussion

The evaluation shows that our technique is applicable to a
variety of data structure implementations, regardless of which
synchronization techniques they use. Our technique is very
efficient (running time is at most 29 ms) because the static
checker explores a very small search space compared to other
techniques. Tools like CAVE [23] and Poling [2] take several
seconds to several hundred seconds for the benchmarks they
can handle. Note that we are not comparing our verification
time to theirs — it would be inappropriate to do so, as
their techniques are fully automatic. The main strength of
our technique is that it is applicable to any concurrent data
structure, i.e. it is generic. The Time-stamped stack has never
been handled by any linearizability verification technique. The
paper presenting the data structure provides a very customized
linearizability proof for the algorithm. The main overhead of
our technique is specifying the operations in terms of sub-
operations. We found that the method of specifying opera-
tions varies with the technique used for synchronization. The
elimination technique has been used in elimination back-off
stack and time-stamped stack. Elimination leads to different
versions of operations depending upon whether the operation
is being eliminated or is eliminating. The set algorithms, the
time-stamped stack, and the pair-snapshot benchmarks had
complex interactions among the operations. We handled these
benchmarks by using multiple versions of some operations

(as described in Section VI). The MS non-blocking queue,
the elimination back-off stack, and the RDCSS benchmarks
had operations distributed across multiple threads.

X. RELATED WORK

We presented a general and practical technique for checking
the linearizability of concurrent data structure implementa-
tions. We now discuss other techniques used for verifying
linearizability; our focus is on generic techniques that can be
applied to more than one concurrent data structure.

Model-checking linearizability [24], [25] aims at exploring
all possible linearization points and finding a counter example;
this does not guarantee soundness. There are linearization-
point based proof techniques for which the linearization points
are user specified or automatically inferred by the techniques.
Such techniques fail to handle more complicated algorithms
where an operation’s linearization point depends upon other
concurrently executing operations.

Most of the techniques for proving linearizability are tied
to a particular class of concurrent data structures. There are
techniques which work only for the algorithms which have the
linearization point inside the operation code [26]. Other tech-
niques work for external linearization points only for read only
operations [27]. Reduction based technique presented in [7]
requires moverness which is too strong a criterion limiting the
application of the approach. The backward-simulation based
technique in [28] claims to be applicable to all concurrent data
structure; it handles the Herlihy-Wing queue as well, which we
cannot. According to the paper the authors had to write 500
proof rules in the KIV theorem prover just for the specific
Herlihy-Wing queue. Authors have applied their technique
only on the Herlihy-Wing queue and extending the technique
to other data structures is not trivial. Liang and Feng [3] use
instrumentation and rely-guarantee reasoning. The technique is
specifically built to handle concurrent data structure implemen-
tations which have helping mechanisms and future dependent
linearization points. Vafeiadis’s approach [23] works on a
number of data structures but fails in verifying complex set al-
gorithms. Zhu et al. [2] handle data structures implementations
which follow the patterns of thread helping and hindsight. In
contrast to these techniques, our method is not dependent on
any property of the data structure implementation. Another
advantage of our technique is that when the check fails, our
method provides the user with a sequence of sub-operations
which cannot be linearized.

XI. CONCLUSION

We have presented a generic and sound technique for prov-
ing concurrent data structure implementations linearizable. We
provide the user with a specification language and a static
checker. Our technique is independent of any properties of
the implementation in question. We have applied our technique
to a number of queue, stack, and set algorithms, as well as
concurrent programs. We found that writing specifications is
straightforward, and the checking process is very efficient.
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