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Mobile medical score calculator apps are widely used among practitioners to help make decisions regarding patient treatment

and diagnosis. Errors in score definition, input, or calculations can result in severe and potentially life-threatening situations.

Despite these high stakes, there has been no systematic or rigorous effort to examine and verify score calculator apps. We

address these issues via a novel, interval-based score checking approach. Based on our observation that medical reference

tables themselves may contain errors (which can propagate to apps) we first introduce automated correctness checking of

reference tables. Specifically, we reduce score correctness checking to partition checking (coverage and non-overlap) over

score parameters’ ranges. We checked 12 scoring systems used in emergency, intensive, and acute care. Surprisingly, though

some of these scores have been used for decades, we found errors in 5 score specifications: 8 coverage violations and 3

non-overlap violations. Second, we design and implement an automatic, dynamic analysis-based approach for verifying score

correctness in a given Android app; the approach combines efficient, automatic GUI extraction and app exploration with

partition/consistency checking to expose app errors. We applied the approach to 90 Android apps that implement medical

score calculators. We found 23 coverage violations in 11 apps; 32 non-overlap violations in 12 apps, and 16 incorrect score

calculations in 16 apps. We reported all findings to developers, which so far has led to fixes in 6 apps.

CCS Concepts: • Human-centered computing→ Smartphones; • Software and its engineering→ Software testing
and debugging.
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1 INTRODUCTION
Mobile medical apps see substantial and growing use in clinical settings, with junior personnel being more likely

to use apps (Section 2.1). For emergency personnel, medical score calculators are among the most used apps

66.7% [33]. While medical scores and score calculator apps are appealing, helping practitioners quickly assess

patient condition, the reliability of such scores and score calculator apps have received little attention. Reliability

is particularly important in acute care, e.g., emergency or ICU, where accuracy can decisively influence outcomes.

Therefore, our focus is the correctness of medical score calculators, i.e., apps that compute a medical score

based on supplied parameters, as well as the underlying score reference table. Such scores are ubiquitous in triage,

ICU, and early warning, e.g., the Sepsis-related Organ Failure Assessment (SOFA) is used in the ICU to determine

the rate of organ failure, onset of sepsis, etc. Traditionally, scores were calculated manually from reference tables
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Fig. 1. SOFA Score (from Vincent et al. [53]).

which map parameter values to several score components; these components are added to obtain an overall score,

which is then checked against an action threshold.

Reference tables are usually defined in medical research papers or regulatory documents. According to

our observations, two main issues impact score calculator apps’ correctness. First, the reference tables can

be inconsistent, which can lead to erroneous scores even when the score is computed manually. Second, the

implementation of these scoring systems in apps can be incorrect: either due to developer error, or due to developer

confusion induced by attempting to implement an inconsistently-defined score, i.e., an incorrect specification.

Incorrect scores can have dire consequences. For example, the Modified Early Warning Score (MEWS) [26]

determines whether a patient should be moved to the ICU, based on the score value being ≥ 4. Thus, when a

score calculator produces an incorrect low score, the condition’s severity is underestimated, which can result in

misdiagnosis and other negative patient outcomes.

This area continues to be under-scrutinized and under-regulated. We are not aware of any prior attempts to

rigorously verify reference scores, or to verify/validate score calculator apps automatically. Other prior efforts,

whether targeted studies on apps implementing opioid [28] or insulin [34] calculators, as well as medical app

meta-studies [11] have revealed significantly issues: different results across apps for the same calculation, incorrect

dosage, potential harmful recommendations, and a lack of medical professional involvement in app creation.

Hence there is an impetus for medical score calculators (and medical apps in general) to be highly scrutinized, but

in practice they are not, as they fall out of the scope of many regulatory bodies. For instance, in the US, the FTC

(Federal Trade Commission) currently only regulates mobile medical apps that are used as a device or connect

with a device, e.g., an insulin pump [25].

To this end, in this paper we introduce the first automated, rigorous approach for verifying reference scores

and their implementations in different apps. Specifically, we aim to answer the following research questions:

RQ1) Can our approach extract and verify medical score specifications?

RQ2) Is our approach effective at analyzing and finding errors in real-world apps?

In Section 2 we define the properties we check, i.e., two partition conditions, and motivate our approach by

identifying and exemplifying three sources of errors in score calculations: inconsistent reference table, inconsistent

GUI, and incorrect score calculation.
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We describe our approach and methodology in Section 3: given a medical reference table defined in a simple

tabular format, we automatically generate code to check the table for partition condition violations with the

help of the Z3 theorem prover [21]. Next, based on this reference specification, we developed a novel dynamic

(runtime) approach that automatically verifies the app for GUI consistency, compliance with the reference table,

and correct score calculation (Section 3.3). Automatic verification required addressing several challenges. First,

we mapped heterogeneous, ad-hoc GUI information to reference table entries (intervals) via semi-supervised

clustering. Second, we combined Depth-first Search with UI automation to systematically and automatically

explore GUIs, as well as extract score-relevant information.

We hold 12 long-established, widely-used medical scores, up to scrutiny; the evaluation of our score extraction

and verification approach is presented in Section 4. We were able to automatically expose errors in five score

reference tables, defined in medical research articles. Note that these scores have been used for decades: they

were introduced as early as 1985, and no later than 2008; and cited heavily (between 157 and 21,863 citations,

respectively).

In Section 5 we evaluate our app checking approach on all 90 Google Play apps implementing these scores. The

approach attained 100% precision and 80% recall. We found dozens of errors that lead to inconsistent GUIs; these

confuse the user, invite input errors, and can even prohibit legitimate values from being introduced (Section 5.2).

Finally, we found score calculation errors, including around threshold values at which emergency intervention is

necessary (Section 5.3).

To summarize, we make the following contributions:

• An approach for extracting and checking medical reference table specifications, applied to 12 scores.

• An approach for checking GUI instantiations of reference tables, and apps’ calculation w.r.t. a reference

score, in Android apps.

• A classification of errors in reference scores and incorrect score implementations in Android apps.

Responsible Disclosure. We have disclosed the errors we found to app developers. As of Feb. 7, 2023,

developers of 6 apps have responded to our bug reporting. All confirmed the errors, fixed the apps, and released

app updates (details in Table 5). Two respondents had medical (MD) degrees: one MD was the app company’s

president; the other, a developer, had MD and CS degrees. Confirmation from MDs underscores the relevance

and importance of our findings.

Artifacts. All our data (apps, reference scoring systems, errors in scores and apps, etc.) is accessible at

https://doi.org/10.17605/OSF.IO/XQEJ5.

2 MOTIVATION
To motivate our approach, we first quantify the adoption of mobile apps in clinical care; next, we define the key

terms and concepts used throughout the paper, and then provide examples of errors in actual reference tables

and apps.

2.1 Mobile Medical Apps Usage
2.1.1 Medical Apps and Calculators in Acute Care. The adoption of mobile medical apps in a clinical setting

in general is already strong, with clinical smartphone use among physicians being reported at 70% and above

as early as 2012 [44, 54]. Mobile medical apps and smartphone-based reference material are widely used in

emergency/acute care. For example, Hitti et al.’s 2021 study [33] regarding emergency department personnel

has revealed that 91.8% of those surveyed used medical apps on their devices during their shifts, amidst heavy

workloads and a stressful environment. Flynn et al.’s 2018 study [24] showed that 98% of acute care nurses used a

smartphone in acute settings “to access information on medications, procedures, and diseases”. Green et al.’s 2019
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study [27] revealed that “60% of users indicated that they are somewhat or very likely to use newly published

medical calculators”.

2.1.2 Higher App Usage for Inexperienced Personnel. Another impetus for studying and improving medical app

reliability is that less-experienced personnel might rely more on apps. First, there is evidence that users of medical

calculator apps are clinicians and nurses, especially inexperienced and younger doctors, according to Hitti et

al. [33]. A 2015 study among surgeons found that “Junior doctors were more likely to use medical apps over

their senior colleagues (p = 0.001) as well as access the Internet on their smartphone for medical information

(p <0.001)” [46]. Additionally, per Green et al.’s survey [27], clinicians with less experience are more likely to

use medical calculator software; conversely, experienced clinicians had doubts on the credibility of medical

calculators.

2.1.3 Medical Score Calculator Accuracy. Pelletier et al.’s 2022 study [47] on both online and mobile bleeding

risk calculators, such as HAS-BLED, has found inconsistencies in calculated risk estimates which can result in

harmful clinical decisions. The study has shown that such imprecise results found in apps are due to incorrect

calculations, using alternative validation studies, and inaccurate translations of risk factors to risk elements.

Fajardo et al.’s 2019 study [22] of online type 2 diabetes risk calculators has revealed that while calculator results

are generally understandable, such calculators may not be suited for patients who lack general health literacy;

the study also found that these calculators have high variability in terms of determining estimated risk.

Therefore, the reliability of scores and score calculator apps is important in general due to heavy reliance

on under-regulated mobile apps, and particularly important in acute care settings where rapid and correct
decisions are key for achieving positive patient outcomes. However, there is a lack of a regulatory framework and

enforcement regarding medical apps. For example, the US Food and Drug Administration (FDA) has jurisdiction

over medical apps. However, the FDA does not regulate apps that “automate clinical calculations and basic

tasks for health professionals” [6]. Additionally, apps that are FDA-approved went through an approval process

initiated by the developers themselves.

2.2 Definitions
2.2.1 Reference Table. We use the term reference table for the table in the form it was first introduced, e.g., in a

medical research article or a regulatory agency document. For example the Sequential Organ Failure Assessment

(SOFA) score, shown in Figure 1 and discussed shortly, was introduced by Vincent et al. [53] in the Intensive
Care Medicine research journal in 1996. The NEWS score, another score we consider, was introduced by the UK’s

National Health Service (NHS) in 2012 and later updated in 2017 to NEWS2 [2]. Score tables are structured as

follows: most commonly, each cell in the table contains intervals for one physiological parameter, while the row

or column header contains a numeric value, typically 0–4. For example, in SOFA’s reference table (Figure 1) the

third row shows intervals 1.2–1.9, 2.0–5.9, and so on, for parameter Bilirubin. The header row in the table shows

numeric values, in SOFA’s case 1 through 4, which correspond to individual scores for the intervals in that column.

Occasionally, a table entry contains just a threshold value, e.g., MAP < 70 mmHg in SOFA’s fourth row. Finally, a

cell can contain intervals or thresholds for more than one parameter, e.g., Dopamine > 15 or norepinephrine > 0.1

in SOFA’s fourth row. Next we describe score computation.

2.2.2 Score. A score is computed by adding the individual scores corresponding to each cell. For example, a

patient with Respiration=350 (score=1), Coagulation=90 (score=2), Liver=7.0 (score=3), Central nervous system=13
(score=1), Renal=1.5 (score=1) would have an overall SOFA score:

𝑆𝑂𝐹𝐴 𝑠𝑐𝑜𝑟𝑒 = 1 + 2 + 3 + 1 + 1 = 8
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Fig. 2. Inconsistent GUI errors in three apps: Nursing Calculator (left), Child-Pugh Score (center), SOFA 1.2.0 (right).

The overall value determines the course of action. In Table 1 (discussed at length later) we show action

thresholds, e.g., “aggressive treatment if HEART score ≥ 7”; hence an accurate value is critical for patients’ health

outcomes.

2.2.3 Partition. Let𝑚𝑖𝑛 ∈ R and𝑚𝑎𝑥 ∈ R be the minimum and maximum values for a parameter, respectively.

Let𝑚𝑖𝑛 < 𝑝1 < 𝑝2 < ... < 𝑝𝑛 < 𝑚𝑎𝑥 be ordered values. Based on the 𝑝𝑖 ’s we can define intervals (e.g., closed,

𝐼𝑖 = [𝑝𝑖 , 𝑝𝑖+1], open, 𝐼 ′𝑖 = (𝑝𝑖 , 𝑝𝑖+1), or combinations thereof). Let 𝐼1, 𝐼2, . . . , 𝐼𝑖 , . . . , 𝐼𝑛 be nonempty (𝐼𝑖 ≠ ∅) intervals
on [𝑚𝑖𝑛,𝑚𝑎𝑥]. Then 𝐼1, 𝐼2, . . . , 𝐼𝑖 , . . . , 𝐼𝑛 form a partition of [𝑚𝑖𝑛,𝑚𝑎𝑥] if two conditions are met:

(1) Coverage (exhaustion):

𝐼1 ∪ 𝐼2 ∪ . . . ∪ 𝐼𝑖 , . . . ∪ 𝐼𝑛 = [𝑚𝑖𝑛,𝑚𝑎𝑥]
(2) Non-overlap (disjointness):

∀𝑖, 𝑗, 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 → 𝐼𝑖 ∩ 𝐼 𝑗 = ∅
As we will illustrate shortly, many errors, in reference tables themselves or the apps implementing the tables,

stem from violations of the aforementioned partition conditions.

2.3 Error Source #1: Inconsistent Reference Table
Errors such as inconsistent definitions in reference tables are the most concerning kinds of issues we found,

because, unlike apps, tables are hard to update or fix. Moreover, as our evaluation shows, an incorrect reference

table is likely to lead to incorrect implementations in apps, because developers tend to implement tables ad
literam. Finally, an inconsistent table will lead to an inconsistent GUI that confuses app users and invites score

calculation errors.

We illustrate several such inconsistencies on the SOFA Score reference table. The SOFA score predicts ICU

mortality as follows: it evaluates the dysfunction of six systems by scoring each organ from 0, which is considered

normal functionality, to 4, the most abnormal [53]. Thus the highest possible score to obtain would be 24,

indicating severe morbidity, and the lowest would be 0.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 3, Article 118. Publication date: September 2023.



118:6 • Rahaman et al.

Score 
should be 2

0

is 1, should be 2

Should be 1

Fig. 3. Nursing Calculator incorrect score (left); MEWS Brasil incorrect scores for Temperature and overall (right).

The reference table for the SOFA score is shown in Figure 1. Notice how for Liver (Bilirubin), the second-to-last

interval is defined as 6.0–11.9. As the parameter is a real number, the actual interval specification is [6.0, 12.0).
That is, a value such as 11.95 would still be in the interval because only the first decimal is specified. The last

interval for bilirubin is > 12.0. Hence the interval-based specification for these two entries is: [6.0, 12.0) and
(12.0,𝑚𝑎𝑥). This squarely violates the coverage property of the partition, because value 12.0 is not covered by any
interval. The same issue is present for parameter Renal (Creatinine), where value 5.0 is not covered. It is unclear

how developers are supposed to cope with this incorrect specification, e.g., the SOFA score of a patient with

Bilirubin=12 and Creatinine=5 can be off by as much as 2 points, depending on how the table is interpreted.

Finally, when bilirubin is specified in 𝜇mol/l, the table’s last column shows ‘(< 204)’ which is incorrect: the

entry should be ‘(> 204)’ (note how values < 204 are already covered in the preceding intervals). If the developer

implements the table ad literam and offers ‘(< 204)’ as a GUI option, the SOFA score of a patient can be off by as
much as 3 points.

Note that even a off-by-one error can affect patients’ condition classification, e.g., between “patient should be

monitored” and “urgently inform a clinician”. Section 4.2 discusses these issues at length.

2.4 Error Source #2: Inconsistent GUI
We now turn to the first kind of implementation errors, where the GUI is inconsistent; our approach detects

two kinds of errors. In the first kind, the user can input the same parameter value into two different GUI boxes,
which impacts the score; in the second kind there is no input box for a certain value. Essentially, these embody

violations of the coverage and non-overlap conditions, respectively; in Section 3.3 we discuss how we check GUIs

for such errors automatically via dynamic analysis and constraint solving.

Example 1: SOFA score in app Nursing Calculator. The app Nursing Calculator,1 with over 50,000 installs,

provides a variety of medical calculators, including the SOFA score. The app’s GUI has two inconsistency errors

(first kind), as highlighted in Figure 2 (left), and described next. The option for Bilirubin shows a range of 1.0–5.9

when it is supposed to be 2.0–5.9. Moreover, for Creatinine the range in the app is 1.0–3.4, when it should be

2.0–3.4. Due to these errors, a patient’s score can be off by as much as 2 points.

1
https://play.google.com/store/apps/details?id=com.niya.lijo.nursingcalculators
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Fig. 4. Overview of our approach and toolchain.

Example 2: Child-Pugh score in app Child-Pugh Score. The Child-Pugh score is generally used to assess the

potential for liver diseases, mainly cirrhosis. The app Child-Pugh Score2 has an inconsistency error (first kind)

regarding values for INR, as highlighted in Figure 2 (center): the first option should be ‘< 1.7’ instead of ‘> 1.7’.

Due to this error, a patient’s score can be off by as much as 2 points.

Example 3: SOFA score in app SOFA 1.2.0. This app exemplifies the second kind of error. The app SOFA 1.2.0,3

removed from Google Play in the course of our research, exhibited a GUI inconsistency error as highlighted

in Figure 2 (right). Note that the reference table’s last column in the Cardiovascular row specifies the score for

. . . 𝑛𝑜𝑟𝑒𝑝𝑖𝑛𝑒𝑝ℎ𝑟𝑖𝑛𝑒 > 0.1; the app however incorrectly lists ‘𝑛𝑜𝑟𝑒𝑝𝑖𝑛𝑒𝑝ℎ𝑟𝑖𝑛𝑒 < 0.1’. Basically, the app offers no

option where users can indicate the 𝑛𝑜𝑟𝑒𝑝𝑖𝑛𝑒𝑝ℎ𝑟𝑖𝑛𝑒 > 0.1 condition; this error can alter the score by 1 point.

2.5 Error Source #3: Incorrect Score Calculation
Even with a consistent table and consistent GUI, apps can still be prone to errors in score calculation, e.g., per the

table the score is 4, but the app displays 6. These calculation errors are silent, hence particularly pernicious (the

user does not have any indication that the calculation has gone awry).

We now present several examples, based on the Modified Early Warning Score (MEWS), used by professionals

to determine whether or not a surgical in-patient requires intensive care [26].

Nursing Calculator. When the app starts, parameter values are in their default settings, i.e., individual scores

are 0, hence the MEWS score is 0. After the user changes the Heart rate to 40, the output score is 1 instead of the

expected value of 2 (screenshot in Figure 3 left). Note that a higher MEWS value indicates a more severe situation.

Another example is theMEWS Brasil app [5], Figure 3 (right). Suppose the user inputs a 41–50 Heart rate and BP
between 71–80; cumulatively, the score is 3. The error manifests when the temperature is in the interval 35.1–36;

per the table, the individual temperature score value is 1. In the app however, the value is 0, hence the displayed

overall MEWS score, 3, is incorrect (correct value: 4). This error is particularly problematic, because for MEWS, 4

is a threshold value: “[at ≥ 4] surgical team should be informed immediately” [26].

These incorrect implementations can lead to differences in assessment, and subsequently outcome, making

verification of scoring systems crucial.

3 APPROACH
We now describe our approach to finding errors in reference tables, app GUIs, and app score calculations. An

overview is shown in Figure 4. In the first stage for each scoring system, we extract a specification for the

reference table; our toolchain then checks the specification for consistency, i.e., for coverage and non-overlap

2
https://play.google.com/store/apps/details?id=br.child_pugh

3
https://apksos.com/app/com.varendrasoft.sofascore
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violations using Z3. We then fix the inconsistency found in the reference table before using it as a reference.

Next, for a given app (APK) implementing that score, our toolchain first performs a dynamic analysis to extract

a GUI specification (aka the GUI instantiation of specification) using the DroidBot automator [38]. The GUI

specification is (a) validated against the correct reference table specification, and (b) verified for consistency,

using Z3. Finally, our approach drives app execution (GUI interaction) automatically, according to specific input

parameter combinations, to produce the app’s output score, and verifies this score against the reference score for

that parameter combination. We now discuss each phase, including a brief introduction to the underlying tools.

3.1 Partition Checking via Satisfiability
3.1.1 The Z3 Theorem Prover. Z3 [21] is a widely-used automated theorem prover for solving logical formulas

in various domains. Z3 is based on Satisfiability Modulo Theories (SMT) techniques, which allow it to handle

a wide range of logical theories, including arithmetic over integers or reals, bit-vectors, or arrays. Given an

input formula, Z3 returns “Sat” or “Unsat”. “Sat”, short for “satisfiable,” indicates that there exists at least one
assignment of values to the variables in the formula that makes the formula true. For example, assuming 𝐴 and 𝐵

are integers, the formula:

𝐴 > 20 ∧ 𝐵 > 𝐴

is satisfiable, with Z3 returning Sat, and the model 𝐴 = 21, 𝐵 = 22.

“Unsat”, short for “unsatisfiable,” indicates that there is no assignment of values to the variables in the formula

that makes the formula true. For example, formula:

𝐴 > 20 ∧ 𝐵 > 𝐴 ∧ 𝐵 < 19

is unsatisfiable, hence Z3 returns Unsat.
We use Z3 to check the satisfiability of logical formulas composed of numerical ranges/intervals. Note that

most score calculations involve parameters whose values span a set of ranges, or intervals. In order to be defined

as a valid set of input ranges, the ranges should meet the coverage and non-overlap conditions, as per Section 2.2.

Hence we encode parameter ranges into a Z3 specification (sets of intervals over integer or real numbers, as

appropriate) and then use Z3 to check whether the set of intervals meets the partition conditions.

3.1.2 Coverage (exhaustion) Checking. We encode coverage checking into Z3 by requiring that the union of a given

set of intervals cover a range, defined by its minimum and maximum values. When Z3 finds a counterexample, it

proves that there exists a “gap” in coverage. For example, the intervals [≥10, 6-9, ≤5], encoded into Z3 as:

¬(∨(𝑋 ≥ 10,∧(𝑋 ≥ 6, 𝑋 ≤ 9), 𝑋 ≤ 5)))

cover the range, hence Z3 will not find a counterexample. However, the intervals [≥10, 6-9, <5] with encoding:

¬(∨(𝑋 ≥ 10,∧(𝑋 ≥ 6, 𝑋 ≤ 9), 𝑋 < 5)))

do not cover the range, and Z3 will successfully find the counterexample X=5, i.e., a non-covered value. Note that

our implementation automatically generates a Python program that invokes Z3 via its Python API.

3.1.3 Non-overlap (disjointness) Checking. In this case, we use the equation solver feature of Z3. Given a set of

variables and corresponding constraints, Z3 generates a solution (if a solution exists) that satisfies the constraints.

Hence, to check for overlap between two intervals, we add them as constraints composing two sets, and as

an additional constraint we check for overlap between the sets. For example, given an interval with incorrect

partitioning [≥65, 45-65], which we encode as:

(𝑋 ≥ 65,∧(𝑌 ≥ 45, 𝑌 ≤ 65), 𝑋 == 𝑌 )

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 3, Article 118. Publication date: September 2023.
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Z3 finds an overlapping value 𝑋 = 65, 𝑌 = 65. If this set of intervals were correctly partitioned ([>65, 45-65]), Z3

would return Unsat.

3.2 Reference Table Validation
We check the validity of reference tables in two steps. First, we extract the reference table from the source PDF

file into a tabular specification in CSV format. Though we employed a PDF→CSV conversion tool, the resulting

CSV is still subject to human scrutiny to ensure accurate conversion (this is one of the only two manual steps of

our approach; the accuracy of this extraction step is discussed in Section 4.3).

The tabular specification is then automatically encoded into a Python program that invokes Z3 to verify that

each parameter of a reference table meets the partition conditions. Note that some of the scores we considered

contain real numbers, specified to one or two decimal places (e.g., 5.9, 5.32). We convert such decimals to integers,

multiplying by 10 or 100, respectively (5.9 becomes 59; 5.32 becomes 532). Section 4.4 discusses the reference

table errors we found.

3.3 App Verification and Validation
App score verification and validation presents several challenges: a) mapping heterogeneous GUI elements

to reference table cells, which we solve via semi-supervised clustering (Section 3.3.1); b) systematically and

automatically exercising the GUI, which we address by coupling Depth-first Search with DroidBot-based static

and dynamic GUI information extraction (Section 3.3.3, Section 3.3.4); and c) identifying app score-related

heterogeneous GUI elements and extracting the corresponding score value (Section 3.3.5). We now present our

approach to solving these challenges in detail.

Text Cluster Reference Entry

No Hypotension

≥ 70 mmHg

MAP ≥ 70 mmHg

MAP ≥ 70 mmHg

1.2 to 1.9

1.2-1.9      [106-168]

1.2-1.9 
mg/dL

1.2-1.9      (110-170) 1.2-1.9   110-170

…….

Text Cluster Reference Entry

…….

mg/dl µmol/L

[110-
170µmol/L]

mg/dl µmol/L

Fig. 5. Heterogeneous GUI mapping example for Cardiovascular Mean arterial pressure attribute and Renal function Creatinine
attribute in apps Nursing, Nursing Calculator, SOFA score, SOFA score, and SOFA Score.

3.3.1 Mapping Heterogeneous GUIs to Specifications. We need to handle heterogeneous GUIs to create the correct

specifications set for different parameters of a specific scoring system. In Figure 5, we provide two sets of examples

of heterogeneous GUI elements that must be translated to SOFA score parameters. The Cardiovascular Mean
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arterial pressure parameter (top) has the score value 0 which appears as a “No Hypotension” Radio Button in the

Nursing app (top left) whereas the Nursing Calculator app (top center) uses a different GUI element, Spinner,

labeled “≥ 70 mmHg”, while the SOFA score app (top center) uses a different label, “MAP ≥ 70 mmHg”; all for
the same parameter value. To address this challenge, we first extract all the GUI information from the apps

automatically using DroidBot (to be introduced later) and then we create a mapping from the heterogeneous,

free-text GUI to the reference table entry. We use semi-supervised clustering, i.e., we manually labeled the first

points, and when analyzing a new app, the new text is binned into the cluster containing the most similar text.

Each of these clusters’ title represents the reference table entry – typically an interval or parameter. We defined

reference table entries manually (right side of Figure 5); text clusters (shown to the left of reference entries) are

populated automatically using edit distance as a similarity metric. In Figure 5 (top right), we show how different

phrasings of Cardiovascular Mean arterial pressure parameter are mapped. First, the text clusters are formed from

the phrasings (No Hypotension, ≥ 70 mmHg,MAP ≥ 70 mmHg), which are then mapped to the same cluster, whose

title is ‘MAP ≥ 70 mmHg’. Similarly, the Creatinine parameter (bottom) poses the challenge of heterogeneous

GUIs: note how the same score value, 1.2-1.9, is expressed in four different ways in four different apps. In this

case, the text cluster entries are mapped to the reference entry ‘1.2-1.9 (110-170)’. We separate reference table

entries by units, e.g., mg/dl were not mixed with 𝜇mol/l; this was necessary only for the SOFA score.

3.3.2 Background (DroidBot). DroidBot [38] is a tool that facilitates test automation for Android apps. DroidBot

allows users to customize the app testing/exploration strategy by specifying input events for certain app states.

DroidBot models the app as a finite state machine and is driven by a specification consisting of States (e.g., a

particular screen), Views (specific GUI elements), and Operations (action to perform on a View, e.g., click, swipe,

or enter text). A JSON script specifies the input events to generate for each state transition. For example, the

script might specify that when the app is in a particular state, DroidBot should generate a specific sequence

of taps, swipes, or other input events to simulate a user interacting with the app. DroidBot can also monitor

app behavior. We use DroidBot to extract the GUI and automate the exploration, e.g., systematically exploring

Radio Button elements to select an interval, clicking the ‘Calculate Score’ button, and retrieving the resulting score.

3.3.3 Leveraging DroidBot. Our approach uses DroidBot to collect score-relevant GUI information dynamically,

i.e., while the app runs. Note that, for practical reasons, dynamic analysis is required for GUI extraction, because

static GUI information alone (e.g., from app resources) is incomplete: extracting the GUI at runtime, when all the

GUI View objects have been instantiated, is more effective. DroidBot’s GUI model helps automatically identify

various View objects (such as Radio Button or TextView) related to target score calculation. To trigger the necessary

events for completing the score calculation procedure (GUI Interaction in Figure 4), we wrote custom DroidBot

scripts that automatically activate GUI elements. For example, the scripts automatically trigger different user

inputs such as choosing from RadioButtons and selecting from Spinner items. Note that score calculators appear in

different Android activities in different apps. We manually directed DroidBot to the activity that corresponds

to the score of interest (this is the second of the two manual steps of our approach; the manual effort could be

avoided with more engineering, which we leave to future work). In the course of dynamic analysis, i.e., when

using DroidBot scripting to populate different score calculations automatically, the states and transitions, e.g.,

events, are recorded into separate JSON files. These JSON files contain the necessary dynamic information

required to construct the GUI specification, as explained next.

3.3.4 Constructing GUI Specification and Finding GUI Specification Errors. Algorithm 1 presents our GUI specifi-

cation construction and verification approach. The FindCalculatorErrorsViaGUISpecification algorithm takes

the target score system’s correct reference GUI specification, the DroidBot-generated JSON files from the target

APK as input, and outputs the GUI specification errors found.
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Algorithm 1 Constructing the GUI Specification and Finding GUI Specification Errors

Input: ReferenceGUISpecification (Correct specifications from the score reference table)

JSON files (DroidBot-generated GUI information from the target APK file)

Output: GUI specification errors

1: procedure FindCalculatorErrorsViaGUISpecification(ReferenceGUISpecification, JSON files)

2: for each JSON file 𝐹 in JSON files do
3: 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 ← []

4: for each view objects 𝑉 in 𝐹 do
5: IsScoreRelevantParameterOptionCheck(𝑉 )

6: RunDFSToGetParameterValueOptions(𝑉 )

7: 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑇𝑒𝑥𝑡 ←ProcessParameterGUIText(𝑉 [“𝑡𝑒𝑥𝑡”])
8: 𝑀𝑎𝑝𝑝𝑒𝑑𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 ←MapExtractedIntervalToCluster(𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑇𝑒𝑥𝑡 )

9: 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 .add(𝑀𝑎𝑝𝑝𝑒𝑑𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 )

10: end for
11: FindGUISpecificationMismatch(𝑅𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒𝐺𝑈 𝐼𝑆𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠)

12: CheckCoverageViolation(𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠)

13: CheckOverlappingViolation(𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠)

14: end for
15: end procedure

For a given app, our toolchain explores its score-relevant screens (aka activities) using DroidBot, generating

multiple JSON files. These JSON files are then fed to our validation method to check for GUI specification errors.

We perform a DFS search to find and save all the View objects representing score parameters and their values

(lines 5,6). The GUI text, e.g., “dopamine ≥ 5 mg/kg/min” is extracted (line 7). Then, we map the extracted text to

its corresponding reference entry using the semi-supervised clustering approach discussed in Section 3.3.1 (line 8).

The mapped values will be used as final extracted intervals (line 9). Finally, GUI specification discrepancies

(Inconsistent GUI errors) are found by comparing correct reference parameter value options and extracted parameter

value options from the app (line 11). The extracted GUI intervals are checked for coverage violations (line 12)

and overlapping violations (line 13) via Z3 (Sections 3.1.2 and 3.1.3).

3.3.5 Finding Calculation Errors Via GUI Exploration. We also check the score resulting from GUI interaction

against the formal specification; in other words, we check the validity of the app-computed final score, given the

selected parameter values, w.r.t. the reference table’s score calculation. This step discovers incorrect score errors.
Algorithm 2 shows our approach to finding score calculation errors. The FindCalculatorErrorsViaGUIExplo-

ration algorithm takes the DroidBot-generated JSON files and the reference GUI specification as input. We first

check whether the View object corresponds to a score parameter option or interval (line 5). If the View object

is a relevant score parameter option, then all the attributes and values of that parameter are extracted using

DFS (lines 6,7). Next, on lines 8 and 9, we find which score parameter option is selected (set to true for spinners)

or checked (set to true for radio buttons). By looping through all the score parameters all their selected values

are saved and passed as input to GetReferenceScore along with the reference GUI specification (line 12). This

method calculates the expected correct score by mapping each selected option to its correct value and then

simply performing an addition to get the total score. We extract the app-generated score via GetAppScoremethod

(line 13) using a similar JSON file View object analysis and text processing approach. We show an example of

score value extraction in Figure 6. The figure shows three different apps, where the computed score appears in

three different forms. Finally, we compare the two scores: the app-calculated score and the expected correct score,

to find any existing score-related error (line 14).
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Algorithm 2 Finding Calculation errors via Automatic, DroidBot-driven GUI Exploration

Input: ReferenceGUISpecification (Correct specifications from the score reference table)

JSON files (DroidBot-generated GUI information from the target APK file)

Output: Score calculation errors

1: procedure FindCalculatorErrorsViaGUIExploration(ReferenceGUISpecification, JSON files)

2: for each JSON file 𝐹 in JSON files do
3: 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑉𝑎𝑙𝑢𝑒𝑠 ← []

4: for each view objects 𝑉 in 𝐹 do
5: IsScoreRelevantParameterOptionCheck(𝑉 )

6: RunDFSToGetParameterAttributes(𝑉 )

7: 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑉𝑎𝑙𝑢𝑒 ←ProcessParameterGUIText(𝑉 [“𝑡𝑒𝑥𝑡”])
8: if 𝑉 [“𝑐ℎ𝑒𝑐𝑘𝑒𝑑”]==true OR 𝑉 [“𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑”]==true then
9: 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑉𝑎𝑙𝑢𝑒𝑠 .add(𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑉𝑎𝑙𝑢𝑒)

10: end if
11: end for
12: 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑆𝑐𝑜𝑟𝑒 ←GetReferenceScore(𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑉𝑎𝑙𝑢𝑒𝑠 , 𝑅𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒𝐺𝑈 𝐼𝑆𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛)

13: 𝐴𝑝𝑝𝑆𝑐𝑜𝑟𝑒 ←GetAppScore(𝑉 )

14: CheckScoreValidity(𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑆𝑐𝑜𝑟𝑒 , 𝐴𝑝𝑝𝑆𝑐𝑜𝑟𝑒)

15: end for
16: end procedure

GUI Information Extraction

Processed Final Score 2 11 11

Fig. 6. Score extraction from heterogeneous GUIs: Blue Rock SOFA (left); SOFA Score (center); Nursing (right).

3.3.6 Comparison With Existing Dynamic Analyzers. Our work makes two key advances that permit rigorous,

automatic score verification: extracting a formal interval semantics from GUIs, and systematic GUI exploration.

We illustrate these advances by comparing with existing dynamic analyses.

GUI Specification Extraction. Although traditional dynamic analyzers [37] can extract GUI information from

apps, such as button size and word count, they do not capture semantics. Furthermore, they are not suitable

for dealing with heterogeneous GUIs as discussed in section Section 3.3.1. Our approach solves these issues by

accurately mapping diverse textual representations of GUI specifications to a reference entry, using interval

semantics. These intervals are then used as inputs to Z3 for coverage and overlap error-checking.

Figure 7 shows how our approach maps GUI elements to intervals for the Creatinine parameter in the br_SOFA
app (top-right part of the figure). Additionally, we separate the extracted numeric intervals based on the different
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units present for an attribute (e.g., mg/dL, 𝜇mol/L) for error-checking. These interval-based specifications can be

encoded into Python and passed to Z3 for error checking (Section 3.2). In contrast, prior GUI extractors do not

map GUI elements to an abstract semantics but rather produce lexical or layout metrics, such as the number of

words and text spacing, as shown on the bottom-right part of the figure.

Our Approach

<1.2, 1.2-1.9, 2.0-3.4, 3.5-4.9, >5.0

<110, 110-170, 171-299, 300-440, >440

mg/dL

µmol/L

Lee et al.

• User actions: 2
• Number of words: 30
• Text spacing: 8mm

Fig. 7. GUI of br_SOFA app (left); extracting an interval-based semantics (top-right); prior GUI extraction approaches
(bottom-right).

GUI Exploration. Traditional dynamic analyzers typically explore the app based on either fixed static GUI

states [37] or random GUI states (explored via Android Monkey [29, 48]). However, the lack of systematic

exploration makes these approaches inadequate for identifying calculation errors that only manifest in a specific

GUI state, that typically differs from the default GUI state.

Hao et al., Ravindranath et al.

(a) Default-based strategy (b) Random strategy (c) Our approach, finding the error

Fig. 8. GUI exploration of Child-Pugh Score (KSoft Apps).

In Figure 8 we illustrate the inadequacy of these approaches and how our approach discovers an actual error

in the Child-Pugh Score app. The error only manifests when the GUI state is exactly as shown in Figure 8(c), e.g.,

the attribute INR value is “> 2.2”.

Defaults-based approaches use the statically-defined default GUI settings, so the GUI setting that induces the

error is not explored (Figure 8(a)). Random-based approaches simply conduct a single random sampling of GUI
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Table 1. Medical scores analyzed, the year scores were introduced, errors found, score ranges, and action thresholds.

Score Year Errors Range Thresholds
Name Interval/Value Overlap

Not Covered

Er
ro
r
Fo

un
d

SOFA 1996 Bilirubin=12.0 Bilirubin 0-24 ≥ 11: “higher mortality rate” [23]

Creatinine=5.0 ([102-204],

(11,162 citations) [<204])

APACHE II 1985 Age=44 0-71 25: “predicted mortality of 50%”

(21,863 citations) ≥ 35 “predicted mortality of 80%” [16]

HEART 2008 Age ([45-65], 0-10 4-6:“cannot discharge;

[≥ 65]) admit for clinical observation,

Troponin (≤normal limit, noninvasive investigation”

1x normal limit) ≥ 7: “early aggressive treatment

(582 citations) including invasive strategies” [50]

Pulmonary 2002 Resp. rate (<6 yrs)=30 0-9 9 “severe exacerbation” [51]

Asthma Score Resp. rate (≥6 yrs)=20
(157 citations)

RAPS “retold” 2004 Respiratory rate=5 0-20 ≥ 7 “increased mortality” [43]

Heart rate=39

(357 citations) Mean arterial press.=49

N
o
e
r
r
o
r
f
o
u
n
d

MEWS 2006 0-18 ≥ 4:“surgical team should be

informed immediately” [26]

NEWS 2012 0-18 Any value of 3 in a parameter:

“urgent ward based response”

5 or 6: “key threshold for urgent response”

≥ 7: “urgent or emergency response” [17]

NEWS2 2017 0-21 5 or 6: “patient should be monitored”

≥ 7: “urgently inform a clinician competent

in the assessment of acutely ill patients” [42]

Child Pugh 1973 0-15 8-10: “increased mortality”

≥ 11:“hepatic failure” [55]

HAS-BLED 2010 0-9 ≥ 3 “high risk of bleeding” [39]

CHA2DS2VASc 2010 0-9 ≥ 2 “high risk of stroke

and thromboembolism” [40]

Glasgow 1974 3-15 13-15: “mild neuroemergency ”

Coma Scale 3-5 “mortality is high and long-term

neurological outcomes are generally poor” [12]

settings, as illustrated in Figure 8(b). This has an exponentially low chance of “stumbling” upon the error, as it

would require the random configuration to land in the exact GUI state shown in Figure 8(c).

In contrast, our approach (Figure 8(c)) first reveals a specific attribute for which there exists a discrepancy

with the reference score (in this example, the INR option parameter “> 2.2” mismatches with the reference

specification “> 2.3”). Next, our DroidBot-based exploration (described in Section 3.3.5) reaches that specific GUI

state (INR value “> 2.2”) and generates the overall score. Finally, when our approach compares the app-generated

score with the expected reference score, the calculation error is revealed.
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4 CHECKING REFERENCE SCORES
We evaluated our approach on 12 medical scores. We focused on scores used in critical settings, where errors

have serious implications. The scores, ranges, potential errors and action thresholds are shown in Table 1. We

first discuss scores’ nature, argue why score accuracy is critical, and then present the errors we found.

4.1 Reference Scores
We only provide details and citations numbers (Table 1, first column) for those scores that contain errors.

The SOFA (Sequential Organ Failure Assessment) score predicts the mortality rate of an ICU patient based

on the functionality of six organ systems. The score is updated and calculated every 24 hours until the patient

is discharged [53]. APACHE II (Acute Physiology and Chronic Health Enquiry II) is used to provide a general

measure of disease severity while taking into account current measurements, age, and health history [35]. The

HEART (History, EKG, Age, Risk Factors, Troponin) score is used to predict the risks of a major cardiac event

while taking into account risk factors from a patient’s history or age and other parameters [50]. The RAPS (Rapid
Acute Physiology Score) predicts patient mortality in critical care transport [49]. The Pulmonary Asthma Score
was developed to simplify children’s asthma severity calculation [51].

The remaining scores do not contain errors (though apps implementing the scores do); the scores’ domains

are: identifying the severity of patients’ conditions in critical care (MEWS [26], NEWS [17], NEWS2 [2]); chronic
liver disease severity (Child-Pugh [55]); risk of bleeding (HAS-BLED [39]); stroke risk (CHA2DS2VASc [40]); and
severity of a brain injury (Glasgow Coma Scale [52]).

4.2 Why is Score Accuracy Critical?
We chose these scores because they capture critical conditions, where action is urgently needed. Errors in the

app-calculated scores can result in under-estimating the real score, i.e., patient state is more critical than the app

indicates, which potentially means that time-critical life-saving actions will not be taken. Conversely, errors that

result in the app over-estimating the real score might lead to an overly aggressive, disproportionate intervention,

as well as unnecessary use of resources (personnel, ICU beds, etc.).

For each score, Table 1’s second-to-last and last columns show the range of possible values and threshold

values, respectively; the third and fourth columns show errors (if any) and will be discussed in Section 4.4.

The threshold column is particularly revealing, as it indicates the score value(s) at which a more aggressive

intervention is warranted, or values where the prognosis turns dim. For example, for the HEART score, a patient

who “scores” ≤ 3 can be discharged; a patient who scores 4–6 would be admitted for noninvasive investigation;

whereas a patient who scores ≥ 7 will receive “early aggressive treatment including invasive strategies”. Hence a

score calculation error at or around the threshold value is particularly concerning.

4.3 Specification Extraction Accuracy
Wemeasured the accuracy of specification extraction in terms of true positives (reference table entries that should

be checked for coverage and non-overlap), true negatives (entries that should not be checked), false positives

(entries that should not be checked, but our approach does check), and false negatives (entries that should

be checked but our approach does not check). Specifically, the results obtained via the automated analysis (A)

described in Section 3.2, were checked and cross-referenced by three human analyzers (H1, H2, H3) as follows.

Human analysis. To establish ground truth, all the reference tables were verified manually by three human

analyzers, H1, H2, and H3. H1/H2/H3 analyzed each table and individually recorded any observed errors, i.e.,

violations of coverage or non-overlap. Next, each human analyzer compared their findings against the errors

reported by the automatic analysis (A) and recorded TP/FP/TN/FN. Finally, a cross-checking was performed to

measure agreement. The observed multiple-rater agreement across H1, H2, and H3’s findings was 100%.
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(a) HEART score has two non-overlap violations: Age=65 and
Troponin=(1x) normal limit. (b) APACHE II has a coverage violation for Age=44.

(c) Pulmonary Asthma Score has two coverage violations
for Respiratory Rate.

(d) RAPS “retold” has three coverage violations for Respira-
tory rate, Heart rate, and Mean arterial pressure.

Fig. 9. Reference tables with no straightforward fixes.

Results. Across all tables, there were 418 rows, of which 319 should be checked for. The resulting confusion

matrix was:

True Positives: 318 False Positives: 0
False Negatives: 1 True Negatives: 99

i.e., 100% precision and 99.69% recall. The false negative was in the APACHE II score, where the error was

hidden in a supplementary, nonstandard, age adjustment footnote (relevant excerpt shown in Figure 9b).

4.4 Inconsistent Reference Table
We found errors in the original reference tables for 4 of the 11 scores; we also found errors in one score as defined

in follow-up work to the original reference table; these errors are shown in the top part of Table 1.

For SOFA, as discussed in Section 2.3, the partition condition (1) coverage, is violated for Bilirubin=12.0 and
Creatinine=5.0; these values do not appear in the table though values lower or higher do appear in the table

(Figure 1). The second issue for SOFA was a violation of the partition condition (2) non-overlap, where multiple

table entries satisfy Bilirubin < 204. While the latter issue might be alleviated if an app/medical system does not

use the 𝜇mol/l units, it is unclear how an app developer is supposed to deal with the former issue: should the 12.0

and 5.0 values be included into the left or right cells in the table?

The HEART score’s reference table (relevant excerpt shown in Figure 9a) violates the non-overlap condition at

two points: Age=65 and Troponin=normal limit; possible resolutions include changing Age≤65 to Age>65 and
Troponin: ≤normal limit to Troponin: <normal limit.

The APACHE II reference table [35], dating back to 1985, violates the coverage condition for Age=44. This table
would be particularly challenging to verify manually as it has 117 entries (13 rows by 9 columns).

The Pulmonary Asthma Score’s reference table (relevant excerpt in Figure 9c) violates coverage at two points:

RespiratoryRate=30 and RespiratoryRate=20; it is unclear how an app developer is supposed to cope with these,

and whether the scores for those values should be 0 or 1.

The “RAPS retold” score was an interesting find. Note that the original RAPS score, introduced by Rhee et

al. [49], does not violate the partition conditions. A new score, REMS, was introduced by Olsson et al. [43] to
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improve upon RAPS; the paper presents both scores, but the “retold” RAPS table (Figure 9d) has three coverage

violations, as shown in Table 1.

4.5 Correcting the Specification
Although we have found faulty reference tables, they do not introduce false positives, as we first translate such

tables into correct ones (partition-wise), then compare apps’ GUI specifications against corrected tables. We now

discuss approaches for, and challenges associated with, fixing the incorrect tables.

Straightforward case. One of the specification errors found in the SOFA reference table (Figure 1) for Bilirubin,

originally ‘<204’, can be easily fixed by changing it to ‘> 204’.

“Reasonable” fix. In addition, the SOFA reference table has no coverage for Bilirubin=12.0 mg/dl. However, by
observing that 204𝜇𝑚𝑜𝑙/𝑙 = 11.93𝑚𝑔/𝑑𝑙 we could infer a reasonable fix, that is, to change ‘> 12.0’ to ‘≥ 12.0’.

Similarly, Creatinine=5.0 mg/dl is not covered, but since 440𝜇𝑚𝑜𝑙/𝑙 = 4.98𝑚𝑔/𝑑𝑙 , a reasonable fix would be to

change ‘> 5.0’ to ‘≥ 5.0’.

4.5.1 Challenging Cases. In the remaining cases (Figure 9), it is unclear how to “fix” the specification. To fix

the HEART reference table (Figure 9a), Age=65 can be assigned a score of either 2 or 1. In fact the paper itself is

ambiguous as it says “one point if the patient was between 45 and 65 years and two points if the patient was 65

years or older” [50]. Similarly, in the case of the Pulmonary Asthma score (Figure 9c), RespiratoryRate=30 and
RespiratoryRate=20 can be assigned score values of either 0 or 1. For the APACHE II reference table (Figure 9b),

Age=44 can be assigned 0, 1, or 2 points. Finally, for RAPS retold (Figure 9d), different score interpretations can

be made for RespiratoryRate=5, HeartRate=39, and MAP=49.

How developers cope with faulty scores. We found 14 instances where developers attempted to correct a faulty

score when implementing that score in their apps. For SOFA, we found 4 apps that performed the straightforward

‘> 204’ fix, and 4 apps that used the reasonable ‘𝐵𝑖𝑙𝑖𝑟𝑢𝑏𝑖𝑛 ≥ 12.0’ and ‘Creatinine ≥ 5.0’ fixes. For APACHE II, 4

apps performed an ad-hoc fix (changing 𝐴𝑔𝑒 < 44 to 𝐴𝑔𝑒 ≤ 44). Finally, for the HEART score, which has overlap

errors at Age=65 and Troponin ≤ normal limit, no app has fixed the overlap errors; moreover, three apps have

introduced additional overlap errors at Age=45.
We can now summarize our RQ1 findings.

RQ1: Can our approach extract and verify medical score specifications?
Answer: Yes. Specification extraction has a 99.5% F1-score and verification has uncovered all 11 violations in the 5
incorrect scores.

5 FINDING ERRORS IN APPS
We have evaluated our approach on a dataset of 90 apps; the selection process is explained next, followed by a

discussion of the errors we found, effectiveness, and efficiency.

5.1 App Dataset
We selected our apps from the Medical category on Google Play. We scraped 3,762 apps and their descriptions

from Google Play; using ranked retrieval, we identified 556 apps classified as medical calculators. We then focused

on apps which computed one or more among the 12 scores we verified, resulting in a total of 90 apps.

5.2 App Errors: Inconsistent GUI
We now present our findings: coverage violations and non-overlap violations.
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Table 2. Inconsistent GUI: coverage violations.

App Name Score Parameter value(s)
Sepsis Clinical Guide APACHE II Hct(%) =60

Child Pugh Calculator Child Pugh INR =1.7

Child-Pugh Score (Blue Rock) Child Pugh INR < 1.7, INR > 2.2

HAS-BLED Score HAS-BLED Age=65

Nursing Calculator MEWS Systolic BP=70, Resp=8, Temp=35.0

Quick EM SOFA PaO2 ≥ 400, Dopamine=5

Nursing SOFA Bilirubin=12.0, Creatinine (mg/dl)=5.0

SOFA Score (widebitsbd) SOFA GCS=15, PaO2 ≥ 400, Platelets ≥ 150, Creatinine (mg/dl) <1.2

SOFA Score (Blue Rock) SOFA Bilirubin=12.0, Creatinine (mg/dl)=5.0, Dopamine=5

Merck Manual Professional SOFA Bilirubin=12.0, Creatinine (mg/dl)=5.0

SOFA SOFA Bilirubin=12.0, Creatinine (mg/dl)=5.0

Table 3. Inconsistent GUI: non-overlap violations.

App Name Score Overlapping Ranges
Child-Pugh Score Child-Pugh INR: [>1.7], [1.7-2.2]

HEART Score HEART Age: [≤45], [45-65], [ ≥ 65]

Troponin: ≤normal limit, 1-3x normal limit, ≥3x normal limit

HEART Score HEART Age: [45-65], [ ≥ 65]

Calculator Troponin: 1-3x normal limit, ≥3x normal limit

Quick EM HEART Age:[45-65], [ ≥ 65],

Troponin: ≤normal limit, 1-3x normal limit

HEART Score HEART Age: [45-65], [ ≥ 65]

Gumption Troponin: ≤normal limit, 1-3x normal limit, ≥3x normal limit

REBELEM HEART Age: [≤45], [45-65], [ ≥ 65],

Troponin: 2-3x normal limit, ≥3x normal limit

Medical Calculators HEART Age: [≤45], [45-65], [ ≥ 65]

Troponin: ≤normal limit, 1-3x normal limit, ≥3x normal limit

MEWS MEWS Heart Rate: [51-101], [101-111], Respiratory rate: [15-21], [21-30]

Systolic BP: [71-81], [81-101], Temperature: [≤35], [35-38.5],[≥38.5]
Nursing Calculator SOFA Bilirubin: [1.2-1.9], [1.0-5.9], Creatinine (mg/dl): [1.2-1.9][1.0-3.4]

Platelets: [≥ 150], [100-150]

SOFA Score (Blue Rock) SOFA Creatinine (𝜇mol/L): [110], [110-170],[300-440],[440]

SOFA SOFA Norepinephrine: [≤0.1], [<0.1]
Sepsis Clinical Guide SOFA Creatinine (mg/dl): [≤1.2],[1.2-1.9], Platelets: [≥ 150], [≤ 150]

5.2.1 Coverage violations. Table 2 shows the results; we found 23 coverage errors in 11 apps. The first column

shows the official app name on Google Play, the second column shows the affected score calculator, while the

third column shows values or ranges that are not covered. Interestingly (though somewhat predictably), the

“original sin” in the SOFA reference table (no coverage for Bilirubin=12.0 and Creatinine=5.0) leads to non-coverage
issues for those parameter values in four apps.

5.2.2 Non-overlap violations. Table 3 shows the results; we found 32 non-overlap errors in 12 apps. The parameters

with overlapping ranges are shown in the third column. In this case, all the HEART score apps’ errors appear

attributable to the error in the original HEART reference table (Table 1).
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Table 4. Calculation errors in apps.

App Name Score Calculation Errors Meets or Exceeds
Parameter Option App Score Ref. Table Threshold

Score

Atrial fibrillation risk calc CHA2DS2VASc Age=75 1 2 N

Child-Pugh Score (KSoft Apps) Child Pugh INR=2.3 11 10 Y

Child-Pugh Score (Blue Rock) Child Pugh INR=2.3 11 10 Y

Child-Pugh Score (Liver) Child Pugh INR=2.3 11 10 Y

Nursing Calculator MEWS Heart rate=40 3 4 N

MEWS MEWS Temperature=[35.1-36] 3 4 N

Nursing Calculator SOFA Platelets=150 12 11 Y

Sepsis 3 SOFA Dopamine=5 12 11 Y

Nursing SOFA PaO2=300 12 11 Y

MediCalc SOFA Dopamine=5 12 11 Y

SOFA Score (widebitsbd) SOFA Creatinine (𝜇mol/L)=106 12 11 Y

Merck Manual Professional SOFA PaO2=300 12 11 Y

SOFA SOFA Creatinine(𝜇mol/L)=106 12 11 Y

SOFA - (Sepsis) SOFA Dopamine=5 12 11 Y

Sepsis Clinical Guide SOFA Bilirubin=1.2 12 11 Y

Sepsis SOFA Calculator SOFA Platelets=20 4 3 Y

Table 5. Apps fixed thanks to our reporting.

App Name Package Name #Installs
Nursing pe.com.codespace.nurse 100,000

MEWS Brasil appinventor.ai_blinkeado.InformaticasaudeMEWS 500

Atrial fibrillation risk calc com.gumptionmultimedia.atrialfibrillationriskscore 5,000

Nursing Calculator com.niya.lijo.nursingcalculators 50,000

Sepsis Clinical Guide app.escavo.sepsis 100,000

SOFA gumptionmultimedia.com.sofascore 1,000

5.3 App Errors: Incorrect Score Calculations
Table 4 shows errors in score calculation; we found 16 calculation errors in 16 apps. The Calculation Errors
grouped columns show the parameter values for which the errors manifest, and the app value vs. reference score

value. We make several observations. First, app errors lead to both under-estimating the true score (e.g., apps

Atrial fibrillation risk calc, MEWS, Nursing Calculator-MEWS) and over-estimating the true score (e.g., apps

Sepsis3 orMediCalc). Both error types are problematic due to potential under-intervention and over-intervention

respectively, as explained in Section 4.2. Second, as the last column indicates, certain errors “straddle” the

threshold, which, as discussed previously, can put the patient in a different class.

We have reached out to the developers of apps where we found errors. So far, 6 apps (listed in Table 5) have

been fixed and updated.
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5.4 Effectiveness
We measured the accuracy of our automated app analysis via a process similar to the one described in Section 4.3.

Specifically, the results obtained via the automated analysis (A) described in Section 3.3 were checked and

cross-referenced by three human analyzers (H1, H2, H3) as follows.

5.4.1 Human Analysis. To establish ground truth, all the apps were first explored manually by three human

analyzers (H1, H2, H3). The analyzers performed several tasks: (a) ensure that the app implements a score that

was among our examined scores, (b) find the app activity implementing the score (which formed the start of

the automated analysis), (c) check for inconsistent GUIs, and (d) exercise all GUI options and check for score

calculation errors. Next, each human analyzer compared their findings against the errors reported by the automatic

analysis (A) and recorded TP/FP/TN/FN. A cross-checking was performed to measure multiple-rater agreement

among the errors discovered. The observed multiple-rater agreement across H1, H2, and H3’s findings was

100%. A fourth human H4 (the research lead) performed a final cross-check between the manual and automatic

analysis results. Note that the manual app analysis was a considerable task, due the large space induced by the

number of apps, number of scores, and manual GUI interaction; overall the task took H1, H2, and H3 about four

person-months.

5.4.2 Results. The confusion matrix resulting from comparing the automated analysis findings with ground

truth was:

Table 6. Results.

True Positives: 20 False Positives: 0
False Negatives: 5 True Negatives: 65

The false negatives are due to apps using WebView (Section 6.5). These figures, a 100% precision and 80% recall,

are par for the course for a dynamic analysis.

5.5 Efficiency
Table 7 provides details on the efficiency of our approach. The median size of app bytecode alone (.dex) was
3.8MB; note that app size (.apk) would be much larger as that includes app resources. A typical app takes about

3 seconds to analyze. Reference table verification, including running Z3, took less than 1 second for any table; for

any app, GUI extraction followed by verification/validation took at most 2 seconds.

Table 7. Efficiency results.

Analysis time (seconds) Bytecode size (MB)
min max median min max median

2 3 3 0.17 125 3.8

We can now summarize our RQ2 findings.

RQ2: Is our approach effective at analyzing and finding errors in real-world apps?
Answer: Yes. The analysis could tackle all 90 real-world apps, achieving 100% precision and 80% recall, and taking 3
seconds per app on average.
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6 DISCUSSION
We now interpret and analyze the findings presented in this study, provide insights into their implications, offer

recommendations for regulatory bodies, discuss limitations, and suggest avenues for future research.

6.1 Interpretation of Our Results
6.1.1 Multiple Numeric Ranges in Scoring Systems Invite Errors. Our study demonstrates that medical scores with

numeric range-based parameters are more susceptible to coverage and non-overlap issues compared to scores

that solely rely on text-based parameters ,such as the GCS score. For instance, the options for the Motor Response
parameter in the GCS scoring system are text-based, such as “Makes no movements”, “Abnormal extension”,
“Abnormal flexion”, “Flexion”, hence mutually exclusive by default. This characteristic makes the GCS scoring

system immune to coverage and non-overlap violation errors. In contrast, a numeric range-based scoring system

like SOFA offers options such as “< 1.2” or “1.2–1.9” for the Bilirubin parameter.

Scores that use at least two numeric ranges in their parameter specifications (e.g., SOFA or APACHE II) invite

errors because at least two intervals are needed for coverage or non-overlap issues. In contrast, scores such as

HAS-BLED involve zero or one interval, hence have no coverage or non-overlap errors.

However, we found no correlation between the total number of parameters and the probability of error in a

scoring system. For example, the HEART score has fewer parameters compared to MEWS, yet the former has a

specification error while the latter is error-free.

6.1.2 Slider-based Input UIs can Prevent Errors. To mitigate coverage and non-overlap errors, app developers

should consider user input via sliders, instead of numeric range-based CheckBox or RadioButton View objects. For

example, Android offers a continuous RangeSlider UI input object [8] that allows developers to create input ranges

by only defining valueFrom and valueTo attributes without the need of labeling intermediate intervals or ranges;

in other words, users select a single value in the interval [valueFrom,valueTo]. Using such a continuous RangeSlider

avoids coverage issues (gaps) thanks to the continuous natures of the UI control. Moreover, sliders prevent the

repetition of the same numeric input value, hence avoiding non-overlap errors. For example, the coverage issue

(e.g., missing value 12.0) found in SOFA calculator apps can be easily avoided using a continuous RangeSlider.

6.1.3 Lack of Transparency and Documentation. Another critical issue we uncovered is the insufficient trans-

parency and documentation pertaining to the references used by medical score calculator apps. In cases where

there were no straightforward fixes for reference table errors (Section 4.5), 8 out of 14 apps failed to provide

comprehensive information regarding the data sources underlying their chosen fixes. This lack of transparency

poses challenges for (a) healthcare professionals in assessing the validity and reliability of these apps, hindering

their ability to make informed judgments, and (b) software verification, because there is no specification to

compare the app against.

6.2 Implications
6.2.1 Research Community. As shown in Section 5.2, an incorrect table entry can propagate to apps, as developers
are forced to either offer a literal translation of the incorrect score into the GUI (which then confuses users),

or provide their own, ad-hoc interpretation of what a “correct” entry should be. The extent of the problem is

larger, unfortunately. Errors in the original version of a score have multiple negative ramifications, as these errors

will propagate not only to apps, but to reference manuals, medical reference websites, etc. The errors will first

confuse developers, then users, and ultimately negatively affect care outcomes. There are preventive and curative

approaches for eliminating such errors. First, it is imperative that the research community perform a stricter

scrutiny of reference tables at peer review time, to correct any error before publication. Second, along the lines of
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Section 4, larger-scope studies should be performed on a broader range of existing, published reference tables,

leveraging automatic reasoning to minimize human effort and ensure scalability.

6.2.2 Clinical Practice. The findings of this study have important implications for healthcare professionals

relying on medical score calculator apps in their clinical practice. The inaccuracies, inconsistencies, and lack of

transparency in these apps underscore the need for caution when utilizing them for clinical decision-making.

Healthcare providers should be aware of the limitations and potential risks associated with these apps and

consider multiple sources of information, or manual cross-checking, to validate the results obtained. Additionally,

healthcare institutions should establish guidelines and standards for the development and evaluation of medical

score calculator apps to ensure their accuracy, reliability, and adherence to evidence-based medicine.

6.3 Generalizability of Proposed Solution
We have observed partition violations or incorrect score implementations in web-based medical score calcula-

tors [4, 7], and partition violations non-medical Android apps, e.g., IELTS score conversion [3]. The root cause

of such issues is that current software development tools – targeting mobile, desktop, or Web platforms – fail

to perform a partition check on GUI elements. These unchecked partition errors lead to user confusion and

ultimately incorrect outcome. The GUI partition checks could be made mainstream and performed at app compile

time: for mobile, in Android Studio or Apple Xcode; for Web, in front-end frameworks; for desktop, in the GUI

designer/specification module of desktop IDEs.

6.4 Recommendations for Regulatory Bodies and App Stores
A 2019 literature review reveals that many consumer health apps have false content, poor design, and bad

functionality [10]. However, score calculator apps are currently outside the purview of regulatory agencies, as

explained next. For example, in the US, the FDA has jurisdiction over certain categories of apps pursuing to

the Federal Food, Drug, and Cosmetic (FD&C) Act: apps that turn the phone into a medical device [6], e.g., by

connecting to external sensors or medical devices, or apps that provide patient-related analyses for diagnosis

and treatment. The US Federal Trade Commission (FTC) is concerned with user privacy and security in medical

apps, as well as developers being able to support health claims made in apps with scientific evidence [1]. US

HIPAA (Health Insurance Portability and Accountability Act) regulates how “covered entities” (e.g., health plans,

providers) handle sensitive private health identifiers (PHI) that could uniquely identify the patient[31, 32]. Hence

apps that automate clinical calculations are outside the purview of such regulatory frameworks. We believe

that voluntary “self-policing” by app developers is unrealistic. Therefore, there are several possible solutions: (1)

regulatory action, e.g., adding score calculator apps and score accuracy to FDA or FTC regulatory frameworks, or

(2) app marketplace action – adding score calculator accuracy as a precondition for listing the app on marketplaces

such as Google Play or Apple App Store.

6.5 Limitations
Our approach has two small limitations which can be addressed with more engineering. First, DroidBot failed to

produce proper JSON GUI data in 5 cases when apps used WebView (i.e., rendering Web content instead of using

Android UI elements). Second, we had to correct occasional minor errors in PDF-to-CSV conversion, e.g., SOFA

mixes numbers with text for Dopamine, while other scores are purely numeric.

6.6 Future Research
6.6.1 Expanding to iOS and WebView-based Calculators. While this paper focused solely on Android apps, we

acknowledge that the iOS versions of our examined apps may contain errors as well. Therefore, our future research

aims to extend the applicability of our toolchain to the iOS platform. Additionally, we intend to streamline the
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analysis process for apps utilizingWebView (apps where DroidBot encountered difficulties) by reducing the manual

effort involved and automating the analysis of such apps.

6.6.2 Evolution of Errors. As shown in Table 1, the papers introducing the reference scores have been cited

substantially (from 157 to 21,863 times depending on the score) so their impact is wide-reaching and long-lasting.

To gain a comprehensive understanding of the propagation of errors, we plan to conduct a study examining

how reference scores evolve from the original, flawed reference. This investigation will offer an evolutionary

perspective: how certain errors are corrected, which errors are still preserved, and what kinds of new errors are

introduced.

6.6.3 Deploying a Tool for Clinicians. Our automated toolchain holds the potential for practical deployment in

at least two settings: by app stores for regulatory checks, and by clinicians for verification purposes. Clinicians

can utilize our toolchain to review the correctness of medical score calculators before using them for diagnostic

purposes, enhancing the reliability of these applications, and ultimately the safety of clinical care that involves

automated score calculators.

7 RELATED WORK
Related work falls into four categories: medical research studies, checking tabular specifications, GUI extraction,

automated testing and analysis.

Medical research studies. Bierbrier et al.’s 2014 study [15] tested medical scores (including Child-Pugh and

HAS-BLED) and calculations, e.g., BMI. The authors asked 5 physicians to identify relevant scores. Two of their

analyzed scores were on our list as well: 5 physicians selected Child-Pugh and 4 physicians selected HAS-BLED

as scores of interest. The authors then tested each of the 14 apps (2 Android and 12 iOS) with 10 values: 2 extreme

values and 8 middle values. There were errors in two Child-Pugh apps, though they were at the low score ranges

hence would not place the patient over the threshold or in a different class. No issues were found with HAS-BLED

implementations. Instead of random testing, our approach verifies reference tables and apps automatically, which,

aside from rigor, makes the approach more scalable. As Table 2, Table 3, and Table 4 show, we found issues with

both these scores, including issues at the threshold. Haffey et al. [28] performed a study on 23 Android opioid

conversion apps. Their study revealed two main issues. First, 11 out of 23 apps failed to identify the sources

related to their calculations; 12 apps failed to state whether any medical professionals were involved in the

app creation. More importantly, these apps’ calculations resulted in highly variable results and significantly

different outputs across apps. Huckvale et al. [34] studied 46 insulin dose calculator apps. They found that 31 of

the apps pose a risk to users due to incorrect dosage calculation. Further issues included lack of disclaimers, lack

of input validation, no updates in response to changes in input, etc. Hers et al.’s 2021 study [30] has revealed an

inaccurate risk assessment in an aortic surgery risk calculator. They found that the calculator underestimated

complications consistently when taking into account patient demographics and data. While the study focused

on the overall accuracy of the calculator in a clinical setting, it shows general reliability issues with medical

calculators which we also manage to uncover in our study. Akbar et al.’s [11] meta-analysis on 74 app studies

(none of which have looked at score calculators, however) has revealed numerous safety concerns, including

calculation errors, potentially harmful recommendations, etc. Though somewhat complementary to our work, all

these efforts underline the importance of verification and tighter scrutiny in the medical app domain.

Checking tabular specifications. Bultan and Heitmeyer [18], and Lawford et al. [36] also performed disjointness

and coverage checks on tabular specifications. Their specifications were written manually, whereas we extract

the specification automatically. Our scope, end-to-end automatic reference table and app checking, is completely

different from theirs.
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GUI extraction. Extracting semantic information from Android app GUIs is notoriously difficult, especially

when it has to be done automatically and at scale (Choudhary et al. [19] discuss challenges and some approaches).

Abbas et al. [9] extracted text data from medical text images using Optical Character Recognition (OCR). The

extracted unstructured text data is then processed to produce relevant medical terms. Guigle [14] builds a

searchable index of GUI elements in Android apps. Liu et al. [41] discuss a method for automatically annotating

mobile UIs using a lexical database that contains design semantics. The approach involves identifying different

components and concepts in UIs by leveraging the vocabulary provided by the database and a set of labeled

examples. The method can automatically identify 25 UI component categories, 197 text button concepts, and

99 classes of icons in Android UIs using code-based properties and a neural network combined with anomaly

detection. This approach is applicable to example-based UI search that identifies visually similar UI screens.

While these OCR, search-engine, and lexical-database approaches provide detailed information about the location

and functionality of GUI elements, they cannot be applied to find medical calculator apps’ GUI errors. Given our

need to map GUI information to specific medical score parameters and interval-based semantics, we decided to

build our own clustering and DroidBot-based approach; we are not aware of related work that would subsume

our approach (Section 3.3).

Automated testing and analysis. The purpose of AMC [37] is to automatically examine user interface designs

of vehicular applications and ensure they meet safety and consistency standards. This tool conducts automated

dynamic exploration of mobile applications similar to ours, but it verifies apps based on UI properties such as

the number of actions per task (should be less than 10 per screen), text word count (not more than 100 words

per screen), text contrast (3:1 contrast ratio between foreground and background recommended), and button

size (must be greater than 80𝑚𝑚2
) and spacing (at least 15mm). On the other hand, our focus is on extracting

UI elements involving numeric ranges or intervals, and verifying them for partition conditions. VanarSena [48]

uses a dynamic exploration approach to test different fault induction modules on the app, including user input,

network, and system state faults. They used “many randomized concurrent monkeys” approach that generates

input events to test the apps and a hit testing mechanism to ensure that input events are sent to valid UI elements.

The hit testing mechanism is implemented as a tree search algorithm that searches for UI elements at a given

position, starting from the top-level UI element. They also used fault injection modules to simulate various user

scenarios and test the robustness of the apps. The approach was effective in finding numerous crashes and bugs

in apps that are already in the marketplace. In contrast, our approach is targeted at finding incorrect definitions of

numeric ranges or intervals. PUMA [29] is a dynamic exploration tool similar to DroidBot, designed for automated

testing of mobile applications; it uses Android Monkey-based testing techniques [13] and is programmable to

explore the application UI and report any issues or bugs found during the testing process. PUMA requires the

application to be instrumented before running the tests. PUMA scripts and apps are input into the tool, and

the interpreter instruments the apps to trigger app-specific events. However, random dynamic exploration does

not check for, and does not detect, calculation errors as our analysis does. FlowCog[45] uses a combination

of static and dynamic analyses to detect information leaks that are caused by improper handling of sensitive

data. FlowCog first extracts a context-aware semantics from the Android app’s source code and resource files,

then uses this information to create a precise model of app behavior, including how it handles sensitive data.

Finally, FlowCog performs dynamic analysis to observe the app’s actual behavior and compares it against the

expected behavior predicted by the model. If the runtime flow deviates from the expected behavior based on the

extracted semantics and view dependencies, FlowCog reports it as a potential data leak. In contrast, we extract

and verify the GUI specification and report potential errors if the GUI or score result differ from the correct

reference specification.

For Android developers creating personal data-handling apps that require accessing sets of interrelated personal

data, the Epistenet [20] tool can assist in addressing many of the associated challenges. The use of Epistenet
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involves storing personal data in a knowledge graph with a semantic structure, exposing the relationships between

the data. As a result, developers only have to interact with a single API. Without Epistenet, personal data is stored

in silos, and developers must manually interface with each data provider; in addition, the relationships between

data are not evident. Epistenet generates a knowledge graph of personal data, categorizing it using ontologies to

establish relationships. Each data piece is represented as an object with attributes and meta-attributes linked to

ontology classes. This enables developers to retrieve interconnected personal data easily. In comparison, our

clustering approach uses distance metrics to map GUI texts to reference entries, whereas Epistenet relies on

manual relationship mapping.

8 CONCLUSIONS
Mobile health apps are seeing increasing adoption in acute care settings, and mobile app developers, including

developers who are not medically qualified, are eager to capitalize on this growing demand. Though errors in

medical scores and score calculator apps can have severe negative consequences, at this point, such scores and

apps are subject to no scrutiny. We tackle this issue via rigorous, automated approaches: (1) extracting reference

tables into interval-based specifications and checking them for partition violations, and (2) validating apps against

the aforementioned specification, as well as verifying app GUIs. We have uncovered errors in long-standing

medical reference articles. We found that incorrect specifications translate to incorrect app implementations,

and that even correct specifications can be implemented incorrectly, affecting the resulting scores. Our findings

indicate a need for tighter scrutiny of reference scores themselves, as well as apps implementing these scores.
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