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ML-Specific Data Debugging
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J Slice Finder: Automated Data Slicing for Model Validation

* ML-specific data debugging methods identify
subsets of the input data with poor accuracy,

—= Fairlearn Get Started  User Guide APl Docs Example Notebooks

negative impact on fairness or label errors (e.g., N ——
SliceFinder, Gopher, Fairlearn, DataScope) Improve fairness P S
Of AI S S.I. emS - Generating Interpretable Data-Based Explanations ... Sh»ar :
= - - - . : : DataScope
 Designed for a single static input dataset with B

provide a principled ramework to understanding the impact of data noises Gopher
and data examples, which enables data cleaning for ML, data market, and
also advancement of ML robustness. ible Data-Based Explanations for Fairness

attributes to slice the data, aligned with features and
predictions in matrix form

Q1. Which data problem should I fix first to improve my mila Pradhan, Boris Glavic, Babak Salimi
accuracy/fairne

e @ & Youlube C3
= = = = u = d
» Difficult to apply to end-to-end ML pipelines, which o= =
do not expose / Sto re req u i red inte rm ed iate data ggiuglgs//;ai:igggrfgjg:iés?tob/ame or is most important for my Shapley Value &

— Data scientists have to manually construct an
appropriate evaluation dataset for each pipeline and Can we automatically apply such
analysis method debugging methods to ML pipelines?
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Automatically Constructing Evaluation Datasets

 Treat ML pipeline as dataflow computation
turning multiple relational inputs into matrix
outputs (features, labels, predictions)

 Compute record-level provenance during
pipeline execution

« Store relational inputs, matrix outputs and
provenance information in a DB, generate
“evaluation” views based on provenance

e Materialise custom evaluation datasets for

external debugging libraries based on these
views (or query them directly)

* Prototypical implementation for pandas/
sklearn and pyspark pipelines, internally
leverages DuckDB:

https://github.com/amsterdata/freamon

# Execute sklearn pipeline, capture intermediates and provenance

view_generator = from_sklearn_pipeline('classify-product-reviews.py')

# Materialize a view over the test labels and predictions,

# sliceable by two attributes from the test input

test_view = view_generator.materialize_test_view(
sliceable_by=["'category', 'rating'],
with_features=False, with_y=True, with_y_pred=True)

# Compute fairness metrics from the view via the fairlearn library

fairness_metrics = fairlearn.metrics.MetricFrame(
metrics={'recall': sklearn.metrics.recall_score},
y_true=test_view.y, y_pred=test_view.y_pred,
sensitive_features=(test_view.category, test_view.rating>3)

print(fairness_metrics.by_group)

# Compute Slicefinder statistics via an aggregation query
view_generator.execute_query ("

SELECT category, rating>3 AS toprated,
AVG(cross_entropy_loss(y, y_pred)) AS avg_loss,
VARIANCE (cross_entropy_loss(y, y_pred)) AS var_loss,
COUNT (%) as size

FROM virtual_test_view

GROUP BY GROUPING SETS ((category,rating>3),(rating>3),(category))")


https://github.com/amsterdata/freamon
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