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ML-Specific Data Debugging
• ML-specific data debugging methods identify 

subsets of the input data with poor accuracy, 
negative impact on fairness or label errors (e.g., 
SliceFinder, Gopher, Fairlearn, DataScope)


• Designed for a single static input dataset with 
attributes to slice the data, aligned with features and 
predictions in matrix form


• Difficult to apply to end-to-end ML pipelines, which 
do not expose / store required intermediate data 
 
→ Data scientists have to manually construct an 
appropriate evaluation dataset for each pipeline and 
analysis method  

Can we automatically apply such 
debugging methods to ML pipelines?

Chung: Slicefinder - Automated data slicing for model validation, ICDE’19.

Pradhan: Interpretable explanations for fairness debugging, SIGMOD’22. 

Bird: Fairlearn - a toolkit for assessing and improving fairness in AI, MSR Tech Report

Karlaš: Data Debugging with shapley importance over end-to-end machine learning pipelines, arXiv



Automatically Constructing Evaluation Datasets 
• Treat ML pipeline as dataflow computation 

turning multiple relational inputs into matrix 
outputs (features, labels, predictions)


• Compute record-level provenance during 
pipeline execution


• Store relational inputs, matrix outputs and 
provenance information in a DB, generate 
“evaluation” views based on provenance


• Materialise custom evaluation datasets for 
external debugging libraries based on these 
views (or query them directly)


• Prototypical implementation for pandas/
sklearn and pyspark pipelines, internally 
leverages DuckDB: 

https://github.com/amsterdata/freamon

https://github.com/amsterdata/freamon
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Fine-grained provenance for 
reconstructing intermediate  

train and test data 

Data access by  
pipeline query

View over intermediate  
data for model training and 

testing, in relational and 
corresponding matrix form
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Pipeline represented as  
SPJ (Select-Project-Join) query
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