
Conference on Innovative Data Systems Research (CIDR) 2023

Reconstructing and Querying  
ML Pipeline Intermediates
Sebastian Schelter (University of Amsterdam) 
https://ssc.io

ML-Specific Data Debugging
• ML-specific data debugging methods identify

subsets of the input data with poor accuracy,
negative impact on fairness or label errors (e.g.,
SliceFinder, Gopher, Fairlearn, DataScope)

• Designed for a single static input dataset with
attributes to slice the data, aligned with features and
predictions in matrix form

• Difficult to apply to end-to-end ML pipelines, which
do not expose / store required intermediate data 
 
→ Data scientists have to manually construct an
appropriate evaluation dataset for each pipeline and
analysis method  

Can we automatically apply such
debugging methods to ML pipelines?

Chung: Slicefinder - Automated data slicing for model validation, ICDE’19.

Pradhan: Interpretable explanations for fairness debugging, SIGMOD’22.

Bird: Fairlearn - a toolkit for assessing and improving fairness in AI, MSR Tech Report

Karlaš: Data Debugging with shapley importance over end-to-end machine learning pipelines, arXiv

Automatically Constructing Evaluation Datasets
• Treat ML pipeline as dataflow computation

turning multiple relational inputs into matrix
outputs (features, labels, predictions)

• Compute record-level provenance during
pipeline execution

• Store relational inputs, matrix outputs and
provenance information in a DB, generate
“evaluation” views based on provenance

• Materialise custom evaluation datasets for
external debugging libraries based on these
views (or query them directly)

• Prototypical implementation for pandas/
sklearn and pyspark pipelines, internally
leverages DuckDB: 

https://github.com/amsterdata/freamon

https://github.com/amsterdata/freamon

R patients R treatmentsR habits

0.5 0.6 0 1 1 0 …
0.3 0.5 0 1 1 0 …
1.0 0.7 1 0 0 1 …
0.9 0.2 0 1 0 1 …

(0.7 0.23 1 0 1 0 …
0.2 0.55 0 1 0 1 …)

1
0
0
1

(1
0) (0.63

0.4)

Xtrain ytrain

Xtest ytest ypred

Rtrain = π (σ (R patients × R habits × R treatments))

Rtest = π (σ (R patients × R habits × R treatments))

σage>min_age

σcounty in …

σdrop_na

⨝habit_id

⨝patient_id

σdate …

πencode(…)

Fine-grained provenance for
reconstructing intermediate  

train and test data

Data access by  
pipeline query

View over intermediate  
data for model training and

testing, in relational and
corresponding matrix form

p2
p3

p5
p6
p7

p9

h4
h5

h7

h11

t1

t4

t7

t8

t10

t13

p2 · h4 · t4

p3 · h11 · t7
p6 · h4 · t8

p9 · h5 · t13

p5 · h7 · t1
p7 · h7 · t10

Pipeline represented as  
SPJ (Select-Project-Join) query

1

2

3

4

Backup Slide

