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Refine search to academic or educational projects
with a relational data model.

Still contains some popular open-source projects,
e.g. PostgreSQL, DuckDB, and NoisePage.
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Add Code Generation to search criteria.

Only NoisePage (open source) and Umbra (closed source) remain.
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Status Quo of Open Source DBMSs?

Brief Summary

• PostgreSQL remains the top dog.

• A few emerging systems bring state-of-the-art technologies to open
source, e.g. DuckDB and NoisePage.

• Still, much research remains proprietary / closed source, e.g. HyPer
and Umbra.

Subjective Problem

• It is difficult for researchers and developers to get started with the
available open source projects.

• Lack of documentation.
• Many built-in assumptions or design decisions.
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Our Vision

A system that. . .

• is primarily targeted at researchers and developers.

• may serve as a unifying framework for database research.

• imposes as few design decisions on the developer as possible.

• is flexible and can be configured to the developer’s demands.

• provides documentation for developers and eases onboarding.
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Design Goals: (1) Extensibility

Plan
Enumerationmutable

DPsize
DPsub
DPccp

TDMinCutAGaT
TDMinCutBranch
. . .

• Extend mutable by implementations of a component.

• Proper documentation of components.

• Clean component API.
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Design Goals: (2) Separation of Concerns
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✗

• Each component is independent of other components.

• Only knowledge of API of other components may be necessary.

• In mutable, components must appear stateless to the outside.
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Design Goals: (3) Abstraction. . .

struct PlanEnumerator {
/** Enumerate feasible plans for query \p G.
* \param G graph representation of the query
* \param CE cardinality estimator component of the
* queried database
* \param CF cost function to minimize
* \param PT table of best plans found , with one

entry per feasible partial plan */
virtual void enumerate_plans(

const QueryGraph &G, // value (in)
const CardinalityEstimator &CE, // component
const CostFunction &CF, // component
PlanTable &PT // value (in & out)

) const = 0;
};

• The PlanEnumerator component appears stateless to the outside.
• Values go in, values come out.
• PlanEnumerator component makes use of other components.
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Design Goals: (4) . . .without Regret

Regret?

Abstraction through dynamic dispatch (e.g. virtual methods) may be too
much overhead for frequently called, short running functions.

• Particularly true for interpretation-based query execution.

Code Generation to the Rescue

• Use template meta programming for compile-time composition.

• Use code generation where the former is inapplicable.

• Provide a deeply-embedded DSL, that mimics C, for easy adaption of
code generation.
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Achieving Extensibility & Separation of Concerns

The Value is the Boundary

A talk by Gary Bernhardt from SCNA 2012
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Achieving Extensibility & Separation of Concerns

The Value is the Boundary

A talk by Gary Bernhardt from SCNA 20121

1https://www.destroyallsoftware.com/talks/boundaries
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Achieving Abstraction without Regret

SQL Query
... WHERE x > 42 ...

Implementation of Branching Selection
IF (compile(this ->condition ())) {

Pipeline ();
};

Generated WebAssembly Code
(br_if

(i32.le_s (; x <= 42 ;)
(get_local $3)
(i32.const 42)

)
(; Pipeline goes here ;)

)
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Achieving Abstraction without Regret

Generated WebAssembly Code
(br_if
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• Google’s JavaScript & WebAssembly engine

• Performs JIT compilation to x86

• Tiered compilation, adaptive execution
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Components Overview: Data Layout
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PAX w/ varying block size

Generic framework to express arbitrary data layouts.
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Components Overview: Cardinality Estimation
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Components Overview: Cost Function

mutable Cost
Function

Cout by Cluet, Moerkotte

linear regression

• Cout for logical / algebraic join ordering

• linear regression trained with automatic benchmarks on physical
operators, used for selecting phys. operators
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Components Overview: Plan Enumeration
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ABSTRACT
Join order optimization is one of the most fundamental problems
in processing queries on relational data. It has been studied exten-
sively for almost four decades now. Still, because of its NP hardness,
no generally efficient solution exists and the problem remains an
important topic of research. The scope of algorithms to compute
join orders ranges from exhaustive enumeration, to combinatorics
based on graph properties, to greedy search, to genetic algorithms,
to recently investigated machine learning. A few works exist that
use heuristic search to compute join orders. However, a theoretical
argument why and how heuristic search is applicable to join order
optimization is lacking.

In this work, we investigate join order optimization via heuristic
search. In particular, we provide a strong theoretical framework,
in which we reduce join order optimization to the shortest path
problem. We then thoroughly analyze the properties of this prob-
lem and the applicability of heuristic search. We devise crucial
optimizations to make heuristic search tractable. We implement
join ordering via heuristic search in a real DBMS and conduct an
extensive empirical study. Our findings show that for star- and
clique-shaped queries, heuristic search finds optimal plans an order
of magnitude faster than current state of the art. Our suboptimal
solutions further extend the cost/time Pareto frontier.

CCS CONCEPTS
• Information systems→ Query planning; Query optimiza-
tion.
ACM Reference Format:
Immanuel Haffner and Jens Dittrich. 2023. Efficiently Computing Join Or-
ders with Heuristic Search. In Proceedings of International Conference on
Management of Data (SIGMOD’23). ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The Structured Query Language (SQL) is the dominant programming
language to query and transform relational data, that is usually
stored in (relational) database management systems ((R)DBMS). SQL
is a declarative language: it only expresseswhat to compute without
specifying how to compute. This declarative style of expressing
operations burdens a DBMS with determining a query execution
plan (or simply query plan) that defines how the computations

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD’23, June 18 – 23, Seattle, WA, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

required by a query are done. A crucial part of determining a query
plan is determining a join order, i.e. the order in which individual
relations are joined by the respective join predicates of the query.
The join order has a major impact on the performance of the query
plan and hence it is of utmost importance to a DBMS to compute a
“good” join order – or at least to avoid “bad” join orders [2, 19]. This
problem is known as the join order optimization problem (JOOP)
and it is generally NP hard [4, 16]. There exists a comprehensive
body of work on computing join orders. It can be divided into work
on computing optimal join orders [4, 7, 12, 13, 16, 22, 32], work on
greedy computation of potentially suboptimal join orders [10, 24, 25,
37], work on adaptive re-optimization of join orders [17, 26, 28, 38],
and recent work based on machine learning [20, 21, 23].

Ono and Lohman [27] derive analytically the number of distinct
plans w/o Cartesian products, showing that the amount of plans is
generally exponential in the number of relations. For queries with
many relations, the search space of plans quickly becomes too large
to explore exhaustively. DBMSs therefore define a threshold beyond
which suboptimal but faster algorithms are used [25]. Interestingly
though, optimal algorithms need not be exhaustive.

In the domain of AI planning, searching extremely large search
spaces is a frequent task and research in that area has brought forth
algorithms to efficiently explore such search spaces. An impor-
tant class of such algorithms is best-first search (BFS). BFS enables
efficiently finding optimal or nearly optimal solutions without ex-
haustively exploring the entire search space. It has proven itself
useful in a wide range of applications [9, 30]. The question arises
whether and how BFS can be applied to JOOP.
Contributions. In this work, we present a new approach to join
order optimization that is based on heuristic search, an important
subset of BFS. In particular, we make the following contributions.

(1) To the best of our knowledge, we present the first formal
reduction of JOOP to shortest path. We present formaliza-
tions for both bottom-up and top-down join ordering and
investigate their dualism. (Section 2)

(2) We define heuristic search, perform a theoretical analysis of
heuristic search applied to our shortest path problem, and
elaborate the general search procedure. (Section 3)

(3) We present an efficient search space representation for both
bottom-up and top-down search. Additionally, we devise
two crucial optimizations, one of which is highly particular
to the search space of JOOP. (Section 4)

(4) We identify and circumvent a potential pitfall when incorpo-
rating a DBMS cost model into heuristic search, that severely
limits the efficiency of the search. (Section 5)

(5) We experimentally evaluate our approach and compare it to
state-of-the-art algorithms. (Section 7)

(6) We propose a new benchmark that systematically explores
the Query Graph Exploration Landscape (QGraEL) along

SIGM
OD’23

Up to 1000x faster than state of the art (DPccp)
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useful in a wide range of applications [9, 30]. The question arises
whether and how BFS can be applied to JOOP.
Contributions. In this work, we present a new approach to join
order optimization that is based on heuristic search, an important
subset of BFS. In particular, we make the following contributions.

(1) To the best of our knowledge, we present the first formal
reduction of JOOP to shortest path. We present formaliza-
tions for both bottom-up and top-down join ordering and
investigate their dualism. (Section 2)

(2) We define heuristic search, perform a theoretical analysis of
heuristic search applied to our shortest path problem, and
elaborate the general search procedure. (Section 3)

(3) We present an efficient search space representation for both
bottom-up and top-down search. Additionally, we devise
two crucial optimizations, one of which is highly particular
to the search space of JOOP. (Section 4)

(4) We identify and circumvent a potential pitfall when incorpo-
rating a DBMS cost model into heuristic search, that severely
limits the efficiency of the search. (Section 5)

(5) We experimentally evaluate our approach and compare it to
state-of-the-art algorithms. (Section 7)

(6) We propose a new benchmark that systematically explores
the Query Graph Exploration Landscape (QGraEL) along
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ABSTRACT
Join order optimization is one of the most fundamental problems
in processing queries on relational data. It has been studied exten-
sively for almost four decades now. Still, because of its NP hardness,
no generally efficient solution exists and the problem remains an
important topic of research. The scope of algorithms to compute
join orders ranges from exhaustive enumeration, to combinatorics
based on graph properties, to greedy search, to genetic algorithms,
to recently investigated machine learning. A few works exist that
use heuristic search to compute join orders. However, a theoretical
argument why and how heuristic search is applicable to join order
optimization is lacking.

In this work, we investigate join order optimization via heuristic
search. In particular, we provide a strong theoretical framework,
in which we reduce join order optimization to the shortest path
problem. We then thoroughly analyze the properties of this prob-
lem and the applicability of heuristic search. We devise crucial
optimizations to make heuristic search tractable. We implement
join ordering via heuristic search in a real DBMS and conduct an
extensive empirical study. Our findings show that for star- and
clique-shaped queries, heuristic search finds optimal plans an order
of magnitude faster than current state of the art. Our suboptimal
solutions further extend the cost/time Pareto frontier.
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1 INTRODUCTION
The Structured Query Language (SQL) is the dominant programming
language to query and transform relational data, that is usually
stored in (relational) database management systems ((R)DBMS). SQL
is a declarative language: it only expresseswhat to compute without
specifying how to compute. This declarative style of expressing
operations burdens a DBMS with determining a query execution
plan (or simply query plan) that defines how the computations
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required by a query are done. A crucial part of determining a query
plan is determining a join order, i.e. the order in which individual
relations are joined by the respective join predicates of the query.
The join order has a major impact on the performance of the query
plan and hence it is of utmost importance to a DBMS to compute a
“good” join order – or at least to avoid “bad” join orders [2, 19]. This
problem is known as the join order optimization problem (JOOP)
and it is generally NP hard [4, 16]. There exists a comprehensive
body of work on computing join orders. It can be divided into work
on computing optimal join orders [4, 7, 12, 13, 16, 22, 32], work on
greedy computation of potentially suboptimal join orders [10, 24, 25,
37], work on adaptive re-optimization of join orders [17, 26, 28, 38],
and recent work based on machine learning [20, 21, 23].

Ono and Lohman [27] derive analytically the number of distinct
plans w/o Cartesian products, showing that the amount of plans is
generally exponential in the number of relations. For queries with
many relations, the search space of plans quickly becomes too large
to explore exhaustively. DBMSs therefore define a threshold beyond
which suboptimal but faster algorithms are used [25]. Interestingly
though, optimal algorithms need not be exhaustive.

In the domain of AI planning, searching extremely large search
spaces is a frequent task and research in that area has brought forth
algorithms to efficiently explore such search spaces. An impor-
tant class of such algorithms is best-first search (BFS). BFS enables
efficiently finding optimal or nearly optimal solutions without ex-
haustively exploring the entire search space. It has proven itself
useful in a wide range of applications [9, 30]. The question arises
whether and how BFS can be applied to JOOP.
Contributions. In this work, we present a new approach to join
order optimization that is based on heuristic search, an important
subset of BFS. In particular, we make the following contributions.

(1) To the best of our knowledge, we present the first formal
reduction of JOOP to shortest path. We present formaliza-
tions for both bottom-up and top-down join ordering and
investigate their dualism. (Section 2)

(2) We define heuristic search, perform a theoretical analysis of
heuristic search applied to our shortest path problem, and
elaborate the general search procedure. (Section 3)

(3) We present an efficient search space representation for both
bottom-up and top-down search. Additionally, we devise
two crucial optimizations, one of which is highly particular
to the search space of JOOP. (Section 4)

(4) We identify and circumvent a potential pitfall when incorpo-
rating a DBMS cost model into heuristic search, that severely
limits the efficiency of the search. (Section 5)

(5) We experimentally evaluate our approach and compare it to
state-of-the-art algorithms. (Section 7)

(6) We propose a new benchmark that systematically explores
the Query Graph Exploration Landscape (QGraEL) along

SIGM
OD’23

Up to 1000x faster than state of the art (DPccp)

18



Components Overview: Query Execution

mutable Query
Execution

Interpreter (discont’d)

WebAssembly & V8

A Simplified Architecture for Fast, Adaptive Compilation and
Execution of SQLQueries

Immanuel Haffner
Saarland Informatics Campus

immanuel.haffner@bigdata.uni-saarland.de

Jens Dittrich
Saarland Informatics Campus

jens.dittrich@bigdata.uni-saarland.de

0 1 2 3 4 5 6 7 8

Compilation time [ms]

0

100

200

300

400

E
x
e
c
u

ti
o
n

 t
im

e
 [

m
s
]

DuckDB

HyPer

mutable (ours)

Figure 1: Design space of query ex-
ecution engines, based on TPC-H
Q1 benchmark results. The compi-
lation time is the time to translate
a QEP to machine code. The execu-
tion time is the time to execute the
machine code and does not include
the compilation time.

ABSTRACT
Query compilation is crucial to efficiently execute query plans.
In the past decade, we have witnessed considerable progress in
this field, including compilation with LLVM, adaptively switch-
ing from interpretation to compiled code, as well as adaptively
switching from non-optimized to optimized code. All of these
ideas aim to reduce latency and/or increase throughput. However,
these approaches require immense engineering effort, a consid-
erable part of which includes reengineering very fundamental
techniques from the compiler construction community, like reg-
ister allocation or machine code generation – techniques studied
in this field for decades.

In this paper, we argue that we should design compiling query
engines conceptually very differently: rather than racing against
the compiler construction community – a race we cannot win
in the long run – we argue that code compilation and execu-
tion techniques should be fully delegated to an existing engine
rather than being reinvented by database architects. By carefully
choosing a suitable code compilation and execution engine we
are able to get just-in-time code compilation (including the full
range from non-optimized to fully optimized code) as well as
adaptive execution in the sense of dynamically replacing code
at runtime – for free! Moreover, as we rely on the vibrant com-
piler construction community, it is foreseeable that we will easily
benefit from future improvements without any additional engi-
neering effort. We propose this conceptual architecture using
WebAssembly and V8 as an example. In addition, we implement
this architecture as part of a real database system: mutable. We
provide an extensive experimental study using TPC-H data and
queries. Our results show that we are able to match or even
outperform state-of-the-art systems like HyPer.

1 INTRODUCTION
To execute SQL queries, database systems must determine for
each query a query execution plan (QEP) that defines how to exe-
cute the query. The QEP is then executed by either interpretation
or compilation. Many early database systems used an interpreter
for query execution, as it is easy to maintain and portable [24].
The Volcano model presented a generic and extensible design,
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adopted by many database systems that followed [15]. The in-
duced overhead of interpretation was dwarfed by the high costs
for data accesses in disk-based systems [8, 22, 32]. However, in
modern main memory systems data accesses are significantly
faster and the interpretation overhead suddenly takes a large
share in query execution costs [3, 32]. Therefore, main memory
systems must keep any overheads during query execution at a
minimum to achieve peak performance. This development was
the reason for an extensive body of work on query interpretation
and compilation techniques and sparked a seemingly endless de-
bate which of the two approaches to prefer [22–24, 27, 32, 38, 42].
Recently, Kohn et al. proposed an adaptive approach to query
execution, where the database system can seamlessly transition
from interpreted to compiled query execution [25]. This approach
requires both a query interpreter and a query compiler that must
be interoperable, which is achieved by a particular execution
mode named morsel-wise execution [28]. Kersten et al. followed
up on this work and present adaptive execution by switching
from non-optimized to optimized code during query process-
ing [23]. Despite the promising results of both works, we believe
that implementing either approach requires expertise in inter-
preter and compiler design and poses an immense development
effort, ultimately preventing wide-spread adoption.

In this work, we propose a new architecture for query exe-
cution engines of database systems. Rather than reengineering
compiler technology, we suggest to employ a suitable and – most
importantly – existing execution engine that takes care of just-in-
time (JIT) compilation and adaptive execution. We dramatically
reduce the complexity of the system by relying on existing infras-
tructure. By translating the QEP to an interchange format and
delegating execution to an underlying engine, we are able to dras-
tically reduce compilation times while maintaining competitive
execution performance, as exemplified in Figure 1.
Contributions
(1) We present a new, simplified, conceptual architecture of a

query execution engine that allows us to delegate JIT com-
pilation, optimization, and adaptive execution to an under-
lying engine. Like that, we avoid reengineering techniques
researched and developed by the compiler community for
decades.

(2) We demonstrate how to implement this architecture in a real
database system: mutable. We use WebAssembly as interme-
diate representation and Google’s V8 as backend. However,
any other backend with similar properties as V8 conceptually
works as well. mutable supports the full pipeline of compiling
SQL queries to executable code.

(3) We discuss in detail the pros and cons over compiling with
LLVM, adaptive compilation, and vectorized execution.

(4) We discuss current limitations of our approach and how they
will get resolved in the (near) future.

(5) We provide an extensive experimental study, showcasing
that even though we use an architecturally much simpler
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Figure 1: Design space of query ex-
ecution engines, based on TPC-H
Q1 benchmark results. The compi-
lation time is the time to translate
a QEP to machine code. The execu-
tion time is the time to execute the
machine code and does not include
the compilation time.

ABSTRACT
Query compilation is crucial to efficiently execute query plans.
In the past decade, we have witnessed considerable progress in
this field, including compilation with LLVM, adaptively switch-
ing from interpretation to compiled code, as well as adaptively
switching from non-optimized to optimized code. All of these
ideas aim to reduce latency and/or increase throughput. However,
these approaches require immense engineering effort, a consid-
erable part of which includes reengineering very fundamental
techniques from the compiler construction community, like reg-
ister allocation or machine code generation – techniques studied
in this field for decades.

In this paper, we argue that we should design compiling query
engines conceptually very differently: rather than racing against
the compiler construction community – a race we cannot win
in the long run – we argue that code compilation and execu-
tion techniques should be fully delegated to an existing engine
rather than being reinvented by database architects. By carefully
choosing a suitable code compilation and execution engine we
are able to get just-in-time code compilation (including the full
range from non-optimized to fully optimized code) as well as
adaptive execution in the sense of dynamically replacing code
at runtime – for free! Moreover, as we rely on the vibrant com-
piler construction community, it is foreseeable that we will easily
benefit from future improvements without any additional engi-
neering effort. We propose this conceptual architecture using
WebAssembly and V8 as an example. In addition, we implement
this architecture as part of a real database system: mutable. We
provide an extensive experimental study using TPC-H data and
queries. Our results show that we are able to match or even
outperform state-of-the-art systems like HyPer.

1 INTRODUCTION
To execute SQL queries, database systems must determine for
each query a query execution plan (QEP) that defines how to exe-
cute the query. The QEP is then executed by either interpretation
or compilation. Many early database systems used an interpreter
for query execution, as it is easy to maintain and portable [24].
The Volcano model presented a generic and extensible design,
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adopted by many database systems that followed [15]. The in-
duced overhead of interpretation was dwarfed by the high costs
for data accesses in disk-based systems [8, 22, 32]. However, in
modern main memory systems data accesses are significantly
faster and the interpretation overhead suddenly takes a large
share in query execution costs [3, 32]. Therefore, main memory
systems must keep any overheads during query execution at a
minimum to achieve peak performance. This development was
the reason for an extensive body of work on query interpretation
and compilation techniques and sparked a seemingly endless de-
bate which of the two approaches to prefer [22–24, 27, 32, 38, 42].
Recently, Kohn et al. proposed an adaptive approach to query
execution, where the database system can seamlessly transition
from interpreted to compiled query execution [25]. This approach
requires both a query interpreter and a query compiler that must
be interoperable, which is achieved by a particular execution
mode named morsel-wise execution [28]. Kersten et al. followed
up on this work and present adaptive execution by switching
from non-optimized to optimized code during query process-
ing [23]. Despite the promising results of both works, we believe
that implementing either approach requires expertise in inter-
preter and compiler design and poses an immense development
effort, ultimately preventing wide-spread adoption.

In this work, we propose a new architecture for query exe-
cution engines of database systems. Rather than reengineering
compiler technology, we suggest to employ a suitable and – most
importantly – existing execution engine that takes care of just-in-
time (JIT) compilation and adaptive execution. We dramatically
reduce the complexity of the system by relying on existing infras-
tructure. By translating the QEP to an interchange format and
delegating execution to an underlying engine, we are able to dras-
tically reduce compilation times while maintaining competitive
execution performance, as exemplified in Figure 1.
Contributions
(1) We present a new, simplified, conceptual architecture of a

query execution engine that allows us to delegate JIT com-
pilation, optimization, and adaptive execution to an under-
lying engine. Like that, we avoid reengineering techniques
researched and developed by the compiler community for
decades.

(2) We demonstrate how to implement this architecture in a real
database system: mutable. We use WebAssembly as interme-
diate representation and Google’s V8 as backend. However,
any other backend with similar properties as V8 conceptually
works as well. mutable supports the full pipeline of compiling
SQL queries to executable code.

(3) We discuss in detail the pros and cons over compiling with
LLVM, adaptive compilation, and vectorized execution.

(4) We discuss current limitations of our approach and how they
will get resolved in the (near) future.

(5) We provide an extensive experimental study, showcasing
that even though we use an architecturally much simpler
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Figure 1: Design space of query ex-
ecution engines, based on TPC-H
Q1 benchmark results. The compi-
lation time is the time to translate
a QEP to machine code. The execu-
tion time is the time to execute the
machine code and does not include
the compilation time.

ABSTRACT
Query compilation is crucial to efficiently execute query plans.
In the past decade, we have witnessed considerable progress in
this field, including compilation with LLVM, adaptively switch-
ing from interpretation to compiled code, as well as adaptively
switching from non-optimized to optimized code. All of these
ideas aim to reduce latency and/or increase throughput. However,
these approaches require immense engineering effort, a consid-
erable part of which includes reengineering very fundamental
techniques from the compiler construction community, like reg-
ister allocation or machine code generation – techniques studied
in this field for decades.

In this paper, we argue that we should design compiling query
engines conceptually very differently: rather than racing against
the compiler construction community – a race we cannot win
in the long run – we argue that code compilation and execu-
tion techniques should be fully delegated to an existing engine
rather than being reinvented by database architects. By carefully
choosing a suitable code compilation and execution engine we
are able to get just-in-time code compilation (including the full
range from non-optimized to fully optimized code) as well as
adaptive execution in the sense of dynamically replacing code
at runtime – for free! Moreover, as we rely on the vibrant com-
piler construction community, it is foreseeable that we will easily
benefit from future improvements without any additional engi-
neering effort. We propose this conceptual architecture using
WebAssembly and V8 as an example. In addition, we implement
this architecture as part of a real database system: mutable. We
provide an extensive experimental study using TPC-H data and
queries. Our results show that we are able to match or even
outperform state-of-the-art systems like HyPer.

1 INTRODUCTION
To execute SQL queries, database systems must determine for
each query a query execution plan (QEP) that defines how to exe-
cute the query. The QEP is then executed by either interpretation
or compilation. Many early database systems used an interpreter
for query execution, as it is easy to maintain and portable [24].
The Volcano model presented a generic and extensible design,
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adopted by many database systems that followed [15]. The in-
duced overhead of interpretation was dwarfed by the high costs
for data accesses in disk-based systems [8, 22, 32]. However, in
modern main memory systems data accesses are significantly
faster and the interpretation overhead suddenly takes a large
share in query execution costs [3, 32]. Therefore, main memory
systems must keep any overheads during query execution at a
minimum to achieve peak performance. This development was
the reason for an extensive body of work on query interpretation
and compilation techniques and sparked a seemingly endless de-
bate which of the two approaches to prefer [22–24, 27, 32, 38, 42].
Recently, Kohn et al. proposed an adaptive approach to query
execution, where the database system can seamlessly transition
from interpreted to compiled query execution [25]. This approach
requires both a query interpreter and a query compiler that must
be interoperable, which is achieved by a particular execution
mode named morsel-wise execution [28]. Kersten et al. followed
up on this work and present adaptive execution by switching
from non-optimized to optimized code during query process-
ing [23]. Despite the promising results of both works, we believe
that implementing either approach requires expertise in inter-
preter and compiler design and poses an immense development
effort, ultimately preventing wide-spread adoption.

In this work, we propose a new architecture for query exe-
cution engines of database systems. Rather than reengineering
compiler technology, we suggest to employ a suitable and – most
importantly – existing execution engine that takes care of just-in-
time (JIT) compilation and adaptive execution. We dramatically
reduce the complexity of the system by relying on existing infras-
tructure. By translating the QEP to an interchange format and
delegating execution to an underlying engine, we are able to dras-
tically reduce compilation times while maintaining competitive
execution performance, as exemplified in Figure 1.
Contributions
(1) We present a new, simplified, conceptual architecture of a

query execution engine that allows us to delegate JIT com-
pilation, optimization, and adaptive execution to an under-
lying engine. Like that, we avoid reengineering techniques
researched and developed by the compiler community for
decades.

(2) We demonstrate how to implement this architecture in a real
database system: mutable. We use WebAssembly as interme-
diate representation and Google’s V8 as backend. However,
any other backend with similar properties as V8 conceptually
works as well. mutable supports the full pipeline of compiling
SQL queries to executable code.

(3) We discuss in detail the pros and cons over compiling with
LLVM, adaptive compilation, and vectorized execution.

(4) We discuss current limitations of our approach and how they
will get resolved in the (near) future.

(5) We provide an extensive experimental study, showcasing
that even though we use an architecturally much simpler
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Figure 1: Design space of query ex-
ecution engines, based on TPC-H
Q1 benchmark results. The compi-
lation time is the time to translate
a QEP to machine code. The execu-
tion time is the time to execute the
machine code and does not include
the compilation time.

ABSTRACT
Query compilation is crucial to efficiently execute query plans.
In the past decade, we have witnessed considerable progress in
this field, including compilation with LLVM, adaptively switch-
ing from interpretation to compiled code, as well as adaptively
switching from non-optimized to optimized code. All of these
ideas aim to reduce latency and/or increase throughput. However,
these approaches require immense engineering effort, a consid-
erable part of which includes reengineering very fundamental
techniques from the compiler construction community, like reg-
ister allocation or machine code generation – techniques studied
in this field for decades.

In this paper, we argue that we should design compiling query
engines conceptually very differently: rather than racing against
the compiler construction community – a race we cannot win
in the long run – we argue that code compilation and execu-
tion techniques should be fully delegated to an existing engine
rather than being reinvented by database architects. By carefully
choosing a suitable code compilation and execution engine we
are able to get just-in-time code compilation (including the full
range from non-optimized to fully optimized code) as well as
adaptive execution in the sense of dynamically replacing code
at runtime – for free! Moreover, as we rely on the vibrant com-
piler construction community, it is foreseeable that we will easily
benefit from future improvements without any additional engi-
neering effort. We propose this conceptual architecture using
WebAssembly and V8 as an example. In addition, we implement
this architecture as part of a real database system: mutable. We
provide an extensive experimental study using TPC-H data and
queries. Our results show that we are able to match or even
outperform state-of-the-art systems like HyPer.

1 INTRODUCTION
To execute SQL queries, database systems must determine for
each query a query execution plan (QEP) that defines how to exe-
cute the query. The QEP is then executed by either interpretation
or compilation. Many early database systems used an interpreter
for query execution, as it is easy to maintain and portable [24].
The Volcano model presented a generic and extensible design,
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adopted by many database systems that followed [15]. The in-
duced overhead of interpretation was dwarfed by the high costs
for data accesses in disk-based systems [8, 22, 32]. However, in
modern main memory systems data accesses are significantly
faster and the interpretation overhead suddenly takes a large
share in query execution costs [3, 32]. Therefore, main memory
systems must keep any overheads during query execution at a
minimum to achieve peak performance. This development was
the reason for an extensive body of work on query interpretation
and compilation techniques and sparked a seemingly endless de-
bate which of the two approaches to prefer [22–24, 27, 32, 38, 42].
Recently, Kohn et al. proposed an adaptive approach to query
execution, where the database system can seamlessly transition
from interpreted to compiled query execution [25]. This approach
requires both a query interpreter and a query compiler that must
be interoperable, which is achieved by a particular execution
mode named morsel-wise execution [28]. Kersten et al. followed
up on this work and present adaptive execution by switching
from non-optimized to optimized code during query process-
ing [23]. Despite the promising results of both works, we believe
that implementing either approach requires expertise in inter-
preter and compiler design and poses an immense development
effort, ultimately preventing wide-spread adoption.

In this work, we propose a new architecture for query exe-
cution engines of database systems. Rather than reengineering
compiler technology, we suggest to employ a suitable and – most
importantly – existing execution engine that takes care of just-in-
time (JIT) compilation and adaptive execution. We dramatically
reduce the complexity of the system by relying on existing infras-
tructure. By translating the QEP to an interchange format and
delegating execution to an underlying engine, we are able to dras-
tically reduce compilation times while maintaining competitive
execution performance, as exemplified in Figure 1.
Contributions
(1) We present a new, simplified, conceptual architecture of a

query execution engine that allows us to delegate JIT com-
pilation, optimization, and adaptive execution to an under-
lying engine. Like that, we avoid reengineering techniques
researched and developed by the compiler community for
decades.

(2) We demonstrate how to implement this architecture in a real
database system: mutable. We use WebAssembly as interme-
diate representation and Google’s V8 as backend. However,
any other backend with similar properties as V8 conceptually
works as well. mutable supports the full pipeline of compiling
SQL queries to executable code.

(3) We discuss in detail the pros and cons over compiling with
LLVM, adaptive compilation, and vectorized execution.

(4) We discuss current limitations of our approach and how they
will get resolved in the (near) future.

(5) We provide an extensive experimental study, showcasing
that even though we use an architecturally much simpler
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ABSTRACT
Join order optimization is one of the most fundamental problems
in processing queries on relational data. It has been studied exten-
sively for almost four decades now. Still, because of its NP hardness,
no generally efficient solution exists and the problem remains an
important topic of research. The scope of algorithms to compute
join orders ranges from exhaustive enumeration, to combinatorics
based on graph properties, to greedy search, to genetic algorithms,
to recently investigated machine learning. A few works exist that
use heuristic search to compute join orders. However, a theoretical
argument why and how heuristic search is applicable to join order
optimization is lacking.

In this work, we investigate join order optimization via heuristic
search. In particular, we provide a strong theoretical framework,
in which we reduce join order optimization to the shortest path
problem. We then thoroughly analyze the properties of this prob-
lem and the applicability of heuristic search. We devise crucial
optimizations to make heuristic search tractable. We implement
join ordering via heuristic search in a real DBMS and conduct an
extensive empirical study. Our findings show that for star- and
clique-shaped queries, heuristic search finds optimal plans an order
of magnitude faster than current state of the art. Our suboptimal
solutions further extend the cost/time Pareto frontier.

CCS CONCEPTS
• Information systems→ Query planning; Query optimiza-
tion.
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1 INTRODUCTION
The Structured Query Language (SQL) is the dominant programming
language to query and transform relational data, that is usually
stored in (relational) database management systems ((R)DBMS). SQL
is a declarative language: it only expresseswhat to compute without
specifying how to compute. This declarative style of expressing
operations burdens a DBMS with determining a query execution
plan (or simply query plan) that defines how the computations
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required by a query are done. A crucial part of determining a query
plan is determining a join order, i.e. the order in which individual
relations are joined by the respective join predicates of the query.
The join order has a major impact on the performance of the query
plan and hence it is of utmost importance to a DBMS to compute a
“good” join order – or at least to avoid “bad” join orders [2, 19]. This
problem is known as the join order optimization problem (JOOP)
and it is generally NP hard [4, 16]. There exists a comprehensive
body of work on computing join orders. It can be divided into work
on computing optimal join orders [4, 7, 12, 13, 16, 22, 32], work on
greedy computation of potentially suboptimal join orders [10, 24, 25,
37], work on adaptive re-optimization of join orders [17, 26, 28, 38],
and recent work based on machine learning [20, 21, 23].

Ono and Lohman [27] derive analytically the number of distinct
plans w/o Cartesian products, showing that the amount of plans is
generally exponential in the number of relations. For queries with
many relations, the search space of plans quickly becomes too large
to explore exhaustively. DBMSs therefore define a threshold beyond
which suboptimal but faster algorithms are used [25]. Interestingly
though, optimal algorithms need not be exhaustive.

In the domain of AI planning, searching extremely large search
spaces is a frequent task and research in that area has brought forth
algorithms to efficiently explore such search spaces. An impor-
tant class of such algorithms is best-first search (BFS). BFS enables
efficiently finding optimal or nearly optimal solutions without ex-
haustively exploring the entire search space. It has proven itself
useful in a wide range of applications [9, 30]. The question arises
whether and how BFS can be applied to JOOP.
Contributions. In this work, we present a new approach to join
order optimization that is based on heuristic search, an important
subset of BFS. In particular, we make the following contributions.

(1) To the best of our knowledge, we present the first formal
reduction of JOOP to shortest path. We present formaliza-
tions for both bottom-up and top-down join ordering and
investigate their dualism. (Section 2)

(2) We define heuristic search, perform a theoretical analysis of
heuristic search applied to our shortest path problem, and
elaborate the general search procedure. (Section 3)

(3) We present an efficient search space representation for both
bottom-up and top-down search. Additionally, we devise
two crucial optimizations, one of which is highly particular
to the search space of JOOP. (Section 4)

(4) We identify and circumvent a potential pitfall when incorpo-
rating a DBMS cost model into heuristic search, that severely
limits the efficiency of the search. (Section 5)

(5) We experimentally evaluate our approach and compare it to
state-of-the-art algorithms. (Section 7)

(6) We propose a new benchmark that systematically explores
the Query Graph Exploration Landscape (QGraEL) along
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