mutable
A Modern DBMS for Research and Fast Prototyping

Immanuel Haffner Jens Dittrich

January 9, 2023 @ CIDR

Saarland University
Saarland Informatics Campus

Database of Databases

Discover and learn about 877 database management systems

Search
Most Recent Most Viewed Most Edited

NI FeatreBase ~ FeatureBase OCEANBASE ~ OceanBase

5 levelpe LevelDB

@ ERAm Eras £ CrateDB CrateDB

MEM vemgraph ; folees » ..
IA SOI. Z sl

GRAPH r'
C&feSDB cereson £NeDB reos o
« CefesDB ceresos
24
CnosDB CnosbDB N 8708
G @ cnosps cnosos

MDB LMDB

Database of Databases

Database of Databases

Discover and learn about 877 database management systems

Search
Most Recent Most Viewed Most Edited

NI FeawreBase ~ FeatureBase OCEANBASE ~ OceanBase

=
LevelDB
== levelos Ve

@ ERAm Eras £ CrateDB CrateDB
BoltDB
"
MEM memgraph ; z I
4 V\ GRapH srap Solr 2 sor
() {NeDB neos .
GRE_oren CHRIDB cwon
BTDB
@CnosDE CnosDB @CnosDB Cnosos
LMDB

877 database systems listed

Refine search to academic or educational projects
with a relational data model.

Search name, keywords, features... Search

Project Types: Academic @] Project Types: Educational @ [Data Model: Relational ©

Found 34 databases

Refine search to academic or educational projects
with a relational data model.

Search name, keywords, features... Search

Project Types: Academic @] Project Types: Educational @ Y Data Model: Relational @

Found 34 databases

Still contains some popular open-source projects,
e.g. POSTGRESQL, DuckDB, and NOISEPAGE.

Add Code Generation to search criteria.

Search name, keywords, features... Search

Data Model: Relational ©

Project Types: Academic @ I Project Types: Educational @

Query Compilation: Code Generation ©

Found 2 databases

Add Code Generation to search criteria.

Search name, keywords, features... Search

Data Model: Relational ©

Project Types: Academic @ I Project Types: Educational @

Query Compilation: Code Generation ©

Found 2 databases

Only NoISEPAGE (open source) and UMBRA (closed source) remain.

Status Quo of Open Source DBMSs?

Brief Summary

Status Quo of Open Source DBMSs?

Brief Summary

+ POSTGRESQL remains the top dog.

Status Quo of Open Source DBMSs?

Brief Summary
+ POSTGRESQL remains the top dog.

- Afew emerging systems bring state-of-the-art technologies to open
source, e.g. DUCKDB and NOISEPAGE.

Status Quo of Open Source DBMSs?

Brief Summary
+ POSTGRESQL remains the top dog.
+ A few emerging systems bring state-of-the-art technologies to open
source, e.g. DUCKDB and NOISEPAGE.
« Still, much research remains proprietary / closed source, e.g. HYPER

and UMBRA.

Status Quo of Open Source DBMSs?

Brief Summary
+ POSTGRESQL remains the top dog.
+ A few emerging systems bring state-of-the-art technologies to open
source, e.g. DUCKDB and NOISEPAGE.
« Still, much research remains proprietary / closed source, e.g. HYPER

and UMBRA.

Subjective Problem

- Itis difficult for researchers and developers to get started with the
available open source projects.

Status Quo of Open Source DBMSs?

Brief Summary
+ POSTGRESQL remains the top dog.
+ A few emerging systems bring state-of-the-art technologies to open
source, e.g. DUCKDB and NOISEPAGE.
« Still, much research remains proprietary / closed source, e.g. HYPER

and UMBRA.

Subjective Problem
- Itis difficult for researchers and developers to get started with the
available open source projects.

+ Lack of documentation.
+ Many built-in assumptions or design decisions.

A system that...

A system that...

- is primarily targeted at researchers and developers.

A system that...
- is primarily targeted at researchers and developers.

« may serve as a unifying framework for database research.

A system that...
- is primarily targeted at researchers and developers.
« may serve as a unifying framework for database research.

« imposes as few design decisions on the developer as possible.

A system that...
- is primarily targeted at researchers and developers.
« may serve as a unifying framework for database research.
« imposes as few design decisions on the developer as possible.

- is flexible and can be configured to the developer's demands.

A system that...
- is primarily targeted at researchers and developers.
« may serve as a unifying framework for database research.
« imposes as few design decisions on the developer as possible.
- is flexible and can be configured to the developer's demands.

« provides documentation for developers and eases onboarding.

Our Approach

Our Approach

Data
Layout

Our Approach

Data
Layout

Our Approach

Cardinality
Estimation

Data
Layout

Our Approach

Cardinality
Estimation

Data
Layout

Our Approach

Cardinality Plan

Estimation

Data

Enumeration

Layout

Our Approach

Cardinality Plan

Estimation Enumeration

Query
Data Execution

Layout

Our Approach

Cardinality Plan

Estimation Enumeration

Query
Data Execution

Layout

Our Approach

Cardinality

Plan

Estimation Enumeration

Storage

Query
Execution

Our Approach

Cardinality

Plan

Estimation Enumeration

Storage

Query
Execution

Our Approach

Cardinality

Plan

Estimation Enumeration

Storage

Query
Execution

Components

Design Goals: (1) Extensibility

Plan
Enumeration

Design Goals: (1) Extensibility

Plan
Enumeration

DPsize

DPsup

DP¢p
TDmincutagaT
TDwmincutranch

Design Goals: (1) Extensibility

(DPsize
DPsub
< DP¢p

Plan

Enumeration TDmincutaGaT

TDwmincutBranch

+ Extend mutable by implementations of a component.
 Proper documentation of components.

+ Clean component API.

Design Goals: (2) Separation of Concerns

Cardinality
Estimation

Plan

Enumeration

Design Goals: (2) Separation of Concerns

Cardinality
Estimation

Plan

Enumeration

Design Goals: (2) Separation of Concerns

. Histograms
Cardinality
. . Sum-Product Network
Estimation

Plan

Enumeration

Design Goals: (2) Separation of Concerns

. Histograms
Cardinality
. . Sum-Product Network
Estimation

Plan

Enumeration

Design Goals: (2) Separation of Concerns

Histograms

Cardinality

Sum-Product Network

Estimation

Plan

Enumeration

- Each component is independent of other components.
+ Only knowledge of API of other components may be necessary.

 In mutable, components must appear stateless to the outside.

Design Goals: (3) Abstraction...

struct PlanEnumerator {

/** Enumerate feasible plans for query \p G.

* \param G

\param CE

*
*
* \param CF
*

\param PT

virtual void

graph representation of

the query

cardinality estimator component of the

queried database

cost function to minimize

table of best plans found, with one

entry per feasible partial plan */

enumerate_plans(

const QueryGraph &G, //

const CardinalityEstimator &CE, //

const CostFunction &CF, //

PlanTable &PT //
) const = 0;

value (in)
component
component

value (in & out)

Design Goals: (3) Abstraction...

struct PlanEnumerator {

/** Enumerate feasible plans for query \p G.

* \param G

\param CE

\param CF
\param PT

virtual void

graph representation of

the query

cardinality estimator component of the

queried database

cost function to minimize

table of best plans found, with one

entry per feasible partial plan */

enumerate_plans(

const QueryGraph &G, //
const CardinalityEstimator &CE, //
const CostFunction &CF, //
PlanTable &PT //

) const = 0;

18

value (in)
component
component

value (in & out)

« The PlanEnumerator component appears stateless to the outside.

Design Goals: (3) Abstraction...

struct PlanEnumerator {

/** Enumerate feasible plans for query \p G.

* \param G
\param CE

\param CF
\param PT

virtual void

graph representation of

the query

cardinality estimator component of the

queried database

cost function to minimize

table of best plans found, with one

entry per feasible partial plan */

enumerate_plans(

const QueryGraph &G, //
const CardinalityEstimator &CE, //
const CostFunction &CF, //

PlanTable &PT //

) const = 0;

18

value (in)
component
component

value (in & out)

« The PlanEnumerator component appears stateless to the outside.

+ Values go in, values come out.

Design Goals: (3) Abstraction...

struct PlanEnumerator {

/** Enumerate feasible plans for query \p G.

* \param G

\param CE

\param CF
\param PT

virtual void

graph representation of

the query

cardinality estimator component of the

queried database

cost function to minimize

table of best plans found, with one

entry per feasible partial plan */

enumerate_plans(

const QueryGraph &G, //
const CardinalityEstimator &CE, //
const CostFunction &CF, //

PlanTable &PT //

) const = 0;

18

value (in)
component
component

value (in & out)

« The PlanEnumerator component appears stateless to the outside.

+ Values go in, values come out.

« PlanEnumerator component makes use of other components.

Design Goals: (4) ...without Regret

Regret?

Abstraction through dynamic dispatch (e.g. virtual methods) may be too
much overhead for frequently called, short running functions.

« Particularly true for interpretation-based query execution.

10

Design Goals: (4) ...without Regret

Regret?

Abstraction through dynamic dispatch (e.g. virtual methods) may be too
much overhead for frequently called, short running functions.

« Particularly true for interpretation-based query execution.

Code Generation to the Rescue

10

Design Goals: (4) ...without Regret

Regret?

Abstraction through dynamic dispatch (e.g. virtual methods) may be too
much overhead for frequently called, short running functions.

« Particularly true for interpretation-based query execution.

Code Generation to the Rescue

+ Use template meta programming for compile-time composition.

10

Design Goals: (4) ...without Regret

Regret?

Abstraction through dynamic dispatch (e.g. virtual methods) may be too
much overhead for frequently called, short running functions.

« Particularly true for interpretation-based query execution.

Code Generation to the Rescue
+ Use template meta programming for compile-time composition.

+ Use code generation where the former is inapplicable.

10

Design Goals: (4) ...without Regret

Regret?
Abstraction through dynamic dispatch (e.g. virtual methods) may be too

much overhead for frequently called, short running functions.

« Particularly true for interpretation-based query execution.

Code Generation to the Rescue
+ Use template meta programming for compile-time composition.
+ Use code generation where the former is inapplicable.

- Provide a deeply-embedded DSL, that mimics C, for easy adaption of
code generation.

10

Achieving Extensibility & Separation of Concerns

1

Achieving Extensibility & Separation of Concerns

The Value is the Boundary

P 0:01/33:44

A talk by Gary Bernhardt from SCNA 2012"

"https://www.destroyallsoftware.com/talks/boundaries

1

https://www.destroyallsoftware.com/talks/boundaries

Achieving Extensibility & Separation of Concerns

Cardinality Plan

Estimation Enumeration

Storage

Query
Execution

12

Achieving Extensibility & Separation of Concerns

Cardinality Plan

Estimation Enumeration

Storage

Execution

12

Achieving Abstraction without Regret

SQL Query
. WHERE x > 42 ...

13

Achieving Abstraction without Regret

SQL Query
WHERE x > 42

\ 4

Implementation of Branching Selection

IF (compile(this->condition())) {
Pipeline ();
1

13

Achieving Abstraction without Regret

SQL Query
WHERE x > 42

\ 4

Implementation of Branching Selection

IF (compile(this->condition())) {
Pipeline ();

¥

Generated WEBASSEMBLY Code

(br_if
(i32.1le_s (; = <= 42 ;)
(get_local $3)
(i32.const 42)
)

(; Pipeline goes here ;)

I8

13

Achieving Abstraction without Regret

Generated WEBASSEMBLY Code

(br_if
(i32.1le_s (; © <= 42 ;)
(get_local $3)
(i32.const 42)
)
(; Pipeline goes here ;)

)

Achieving Abstraction without Regret

Generated WEBASSEMBLY Code

(br_if
(i32.1e_s (; & <= 42 ;)
(get_local $3)
(i32.const 42)
)

(; Pipeline goes here ;)

)

+ Google’s JAVASCRIPT & WEBASSEMBLY engine

+ Performs JIT compilation to x86

« Tiered compilation, adaptive execution

Components Overview: Data Layout

Data
Layout

Components Overview: Data Layout

Data
Layout

Generic framework to express arbitrary data layouts.

Components Overview: Data Layout

Data row layout
Layout . .
y PAX w/ varying block size

Generic framework to express arbitrary data layouts.

15

Components Overview: Cardinality Estimation

Cardinality
Estimation

Components Overview: Cardinality Estimation

Sum-Product Networks
Cardinality (interpretable ML)

Estimation Histograms

Components Overview: Cost Function

Components Overview: Cost Function

Cout by Cluet, Moerkotte

linear regression

« Coyt for logical / algebraic join ordering

« linear regression trained with automatic benchmarks on physical
operators, used for selecting phys. operators

Components Overview: Plan Enumeration

Plan
Enumeration

Components Overview: Plan Enumeration

Plan
Enumeration

DPsize
DPsub
DP¢cp

TDmincutaGaT

Plan
Enumeration

Components Overview: Plan Enumeration

DPsize
DPsub
DP¢cp

TDmincutaGaT

Heuristic Search

Efficiently Computing Join Orders with Heuristic Search

Immanuel Haffner
Saarland Informatics Campus
immanuel haffner@bigdata.uni-saarland.de

ABSTRACT

Join order optimization is one of the most fundamental problems
in processing queries on relational data. It has been studied exten-
sively for almost four decades now. Still, because of its NP hardness,
no generally efficient solution exists and the problem remains an
important topic of research. The scope of algorithms to compute
join orders ranges from exk to ic
ha<ed on graph pmpernes‘ to greedy semch to genetic algorithms,

Jens Dittrich
Saarland Informatics Campus
jens.dittrich@bigdata.uni-saarland.de

required by a query are done. A crucial part of determining a query
plan is determining a join order, i.e. the order in which individual

relations are joined by the respective join predicates of the query.

The join order has a major impact on the performance of the query
plan and hence it is of utmost importance to a DBMS to compute a
“good” join order - or at least to avoid “bad” join orders [2, 19]. This
problem is known as the join order optimization problem (JOOP)
and it is generally NP hard [4, 16]. There exists a comprehensive
hodv of work on comnuting inin arders Tt ean he divided inta work

Up to 1000x faster than state of the art (DPccp)

€c,aowoIs

Components Overview: Query Execution

Query
Execution

19

Components Overview: Query Execution

Interpreter (discont’d)

Query
Execution

19

s Overview: Query Execution

Query
Execution

WEBASSEMBLY & V8

Interpreter (discont’d)

A Simplified Architecture for Fast, Adaptive Compilation and
Execution of SQL Queries

Immanuel Haffner
Saarland Informatics Campus
immanuel haffner@bigdata.uni-saarland.de

4009 DuckDB Figure 1: Design space of query ex-
ecution engines, based on TPC-H
Q1 benchmark results. The compi-
lation time is the time to translate
a QEP to machine code. The execu-
t o7 & tion time is the time to execute the
Compilation time (ms] machine code and does not include
the compilation time.

mutable (ours)

00

Execution time [ms]

»
Hyper

Jens Dittrich
Saarland Informatics Campus
jens.dittrich@bigdata.uni-saarland.de

adopted by many database systems that followed [15). The in-
duced overhead of interpretation was dwarfed by the high costs
for data accesses in disk-based systems [8, 2]. However, in
modern main memory systems data accesses are significantly
faster and the interpretation overhead suddenly takes a large
share in query execution costs [3, 32]. Therefore, main memory
systems must keep any overheads during query execution at a

minimum to achieve peak performance. This development was
the reason for an extensive body of work on query interpretation

JIT compilation, tiered compilation, and adaptive execution

€z,19a3

19

Continuous Benchmarking

o This benchmark was performed on commit 0946fa15b115cd798e21d39ebaéb9638d4328d69 on machine deeprig02
operators > selection-onesided > INT(4) &= deeprig02 2022-08-30 02:28 ~ Line Chart ~ X
- DuckDB

“» HyPer (all cores)

HyPer (single core)

Execution time [ms]

- WebAssembly (ColumnStore)

* WebAssembly (RowStore)

0.01 0.21 041 061 0.81

Selectivity

+ automated benchmarking (nightly)

+ automatic detection of performance anomalies

20

[=] 5452

O github.com/mutable-org/mutable

https://github.com/mutable-org/mutable

Backup Slides

Components Overview

+ Data Layouts:

- generic framework, arbitrary layouts; implemented row, PAX with varying block size

+ Cardinality Estimation:

+ Sum-Product Networks (interpretable ML), Histograms
+ Cost Functions:

- for algebraic/logical optimization: Cyy¢ by Cluet, Moerkotte

- for physical optimization: linear regression trained on autom. benchmarks
+ Plan Enumeration:

* DPsize, DPsub, DPccp, TDmincutaGaT
+ our Heuristic Search, published @SIGMOD’23 (up to 1000x faster than DPccp)

 Query Execution:

+ query compilation to WEBASSEMBLY, tiered compilation & adaptive execution in
Google's V8, published @EDBT'23 (similar UMBRA’s Tidy Tuples & Flying Start)

22

Upcoming Papers

EDBT'23

A Simplified Architecture for Fast, Adaptive Compilation and
Execution of SQL Queries
Immanuel Haffner

Saarland Informatics Campus
immanuel haffner@bigdata.uni-saarland.de

Jens Dittrich
Saarland Informatics Campus
jens.dittrich@bigdata.uni-saarland de

adopted by many database systems that followed [15]. The in-

F 4009 Ducko8 Figure 1: Design space of query ex- duced overhead of interpretation was dwarfed by the high costs
T ecution engines, based on TPC-H for data accesses in disk-based systems [8, 22, 32]. However, in
. Q1 benchmark results. The compi- modern main memory systems data accesses are significantly
£ muave oury lation time is the time to translate faster and the interpretation overhead suddenly takes a large
i syne? @ QEP to machine code. The execu- share in query exccution costs [3, 32]. Therefore, main memory

tion time is the time to execute the

ARETAL systems must keep any overheads during query execution at a
Compitation time (ms) Machine code and does not include

minimum to achieve peak performance. This development was

SIGMOD’23

ABSTRACT

the compilation time.

the reason for an extensive body of work on query

Query compilation i
In the past decade, w
this field, including cd
ing from interpretatiq
switching from non-
ideas aim to reduce la
these approaches req
erable part of which
techniques from the ¢
ister allocation or maq
in this field for decad
In this paper, we ary
engines conceptually
the compiler constru
in the long run - we|
tion techniques shoul]
rather than being rein
choosing a suitable c
are able to get just-in
range from non-opti
adaptive execution i
at runtime — for free!
piler construction con
benefit from future i
neering effort. We p
WeBASSEMBLY and V8|
this architecture as p:
provide an extensive

Efficiently Computing Join Orders with Heuristic Search

Immanuel Haffner
Saarland Informatics Campus
immanucl haffner@bigdata.uni-saarland.de

ABSTRACT
Join order optimization is one of the most fundamental problems
in processing queries on relational data. It has been studied exten-
sively for almost four decades now. Still, because of its NP hardness,
no generally efficient solution exists and the problem remains an
important topic of research. The scope of algorithms to compute
join orders ranges from exhaustive enumeration, to combinatorics
based on graph properties, to greedy search, to genetic algorithms,
to recently investigated machine learning. A few works exist that
use heuristic search to compute join orders. However, a theoretical
argument why and how heuristic search is applicable to join order
optimization is lacking,

In this work, we investigate join order optimization via

Jens Dittrich
Saarland Informatics Campus
jens.dittrich@bigdata.uni-saarland.de

required by a query are done. A crucial part of determining a query
plan is determining a join order, i.. the order in which individual
relations are joined by the respective join predicates of the query.
‘The join order has a major impact on the performance of the query
plan and hence it is of utmost importance to a DBMS to compute a
“good” join order - or at least to avoid “bad” join orders [2, 19]. This
problem is known as the join order optimization problem (JOOP)
and it is generally NP hard [4, 16]. There exists a comprehensive
body of work on computing join orders. It can be divided into work
on computing optimal join orders [4,7, 12, 13, 16, 22, 32], work on
greedy computation of potentially suboptimal join orders [10, 24, 25,
37), work on adaptive re-optimization of join orders [17, 26, 28, 38],
and recent work based on machine learning [20, 21, 23]

Ono and Lohman (271 derive analvtically the number of distinct

23

24

	Backup Slides

