I Z 1

Graph Database Management System

Semih Salihoglu

Y waTERLoO | DBE st?.%?.e.:"s

(Property) Graph DBMS Overview
» Read-optimized DBMSs targeting app. data modeled as graphs.

» ex. popular apps: recommendations, fraud detection, highly

heterogenous knowledge graph/master data management

Data Model Query Language System

Labeled Graph Graph-specific SQL Graph-specific storage

structures, indices, operators
Account

name-Alice MATCH (a)-[:Transfer]->(b)

WHERE a.name = Bob

11271314
RETURN b.name _i;

2 |1 \ |4 \ |5 \

3

4

Transfer o
Accountamount: 800 Account e.g., record ID-based join

name: Bob name:Carol indices

Differences Between Native GDBMSs vs RDBMSs

1. Pre-defined/Pointer-based joins

» common joins are on integer record IDs using a join index
2. Optimized support for m-n joins (later in this talk)
3. Semi-structured data model & URI-heavy datasets

4. Better support for recursive join queries

“Give me all direct or indirect possible sources of money
flow into Alice’s account from Canada.”

MATCH a-[:Transfer*]->b
WHERE a.location=Canada AND b.owner=Alice

Can be done in recursive SQL but harder

Kuzu Goals: Perfect this feature set: many-to-many and recursive joins,

heterogenous/semi-structured data, strings/URIs 3

Kuzu Current Usability Features

1. Usability features:
> Property Graph Data Model & Cypher query language
» DuckDB/SQLite-like embeddable in apps
» pip install kuzu

import kuzu

db = kuzu.database('./testdb’)
conn = kuzu.connection(db)
results = conn.execute('MATCH (u:User) RETURN u.name;’)
while results.hasNext():
print(results.getNext())

» Serializable with ACID transactions, i.e., atomic & durable

» based on write-ahead-logging

Data
Systems
Group

Example Application Domain:
Graph Datascience (GDS) Pipelines

Graph Neural Network Python DS Libraries Graph Analytics & Viz

Pytorch Geometric, Pandas. Nump NetworkX,
DGL, Graph-Al > v Graph-tool, PyVis,
. . SciPy, etc.
libraries Cytoscape

— T
— A

0/‘\0 e ‘YQ
= -
Adjacency List, Parquet/Arrow/CSV Relational DBMSs
Edge Lists

Kuzu Current Performance Features

Vectorization Factorization Morsel-driven Parallelism
- — b name a c) > S?an(sj’z’are
can lneer : morselized” across
Node a.lD < 10] {Ly, Liz} | X[{Uy..,Us00} | X | {Cy, ..., Ci00}
[: 5 threads
EEE—— — -
{Ly, Liz} | X | {U100,---,U199} | X | {Ci00,---,C190}

Factorzed Databases

Novel Join Algorithms Disk-based Columnar Storage Disk-based Hash Index
> keys hash func.

000 | Karim

\‘\ Alice
\ 001

\ » 010 | Alice
\ Noura

» 011 | Noura
node CSR-based join Karim

properties indices & edge props

Joins in Kuzu

Design Goals for Fast Joins in Kuzu

1. Factorize/compress intermediate results under m-n joins
2. Always perform sequential scans of nodes, edges & properties

> Behave similar to Hash Joins that are common in RDBMS

3. Avoid full scans of properties when possible

Data
Systems
Group

DG 1: Factorization [Olteanu et. al. SIGMOD Rec., 16]
MATCH (a) (b) (c)

WHERE b.name=°‘Liz’ AND
RETURN a.ID, c.ID

Flat Representation F-Representation

b |b.name | a | ¢ b, b.name a c

Ly Liz U | ¢ {Ly, Liz} | X | {Ug.., Uo} | X | {Cq, ..., C1o0}
{L,, Liz} X {Uloo,---, Uige} | X | {Ci00s - C190}

I e T 2x(100+100) tuples

L, Liz Uioo | Ci0o

L, Liz Uigg | Ci00

2x(100x100) tuples
» Key message: Outputs of a query Q can be factorized by analyzing the

conditional independence of the variables in Q statically during compilation

Data
Systems
Group

Kuzu Intermediate Relations: Factorized Vectors

» Standard vectorized query processors: single group of vectors

» Kuzu: uses multiple “factorized” groups of vectors

MATCH (a) (b) (o)

WHERE b.name=°‘Liz’ AND
RETURN a.ID, c.ID

Vector Vector Vector
Group 1 Group 2 Group 3
b b.name a c
Ly Liz U, C,
L, Liz U, C,
curldx = 1 v % | ‘
flat U C Amine Mhedhbi VLDB "21
° - — on academic
curldx=-1 curldx = -1 job market!
unflat unflat

» Each represents either 1 (flat) or a set of values (unflat) 0

DG 2 & 3: Sequential Scans But Avoid Full Scans

» Standard Hash Joins & Sequential file scans:
> Sequential scans /
» Hash Joins w/ sideways information passing
> Avoid full file scans ./
» Challenge: How to combine with factorization and obtain large
number of factorization structures?

» Solution: 2 operators: SJoin and ASPJoin
.

VLDB ‘22 CIDR "22
DS2:: Based on our work on DuckDB’s hash joins (but flat processing) 1

Systems
Group

SJoin Example

» Pass IDs of “joining” nodes sideways from build side of HJs to the probe

sides to avoid full table scans

MATCH (b:Account)-[:Transfer]->(c:Account)
WHERE b.name=Liz’ RETURN c.ID

(b.ID, b.name) c.IDs
—
0 S e \ (7, Liz) {107, 5, 15}
semijoin mask on ID Hash Table
/7 |—™107 | 5|15 € oin !
Pi « P7 | Pim values
0O . 1 .. 0 / Liz

/

~
N

1. Factorization \/

2. Sequential scansv Liz
3. Avoid full scansv/ N
s + Semiioi Scan
can enm?uw Account b
(c) Transfer name=Liz

mgs"::?ems X {107, 5, 15}
Group

Example: Back to 2-hop query
MATCH (a) (b) ©

WHERE b.name=°‘Liz’
RETURN a.name, b.ID, c.name

Desired factorization : E(al, ai;.name),...,(ayq, akl.name)j XX[{(cl,cl.name),...,(ckz, ckz.name)}]

? 1
unflat flat unflat
Problem: If we want to join a.name and c.name values with a.ID and

c.ID, we often need to “flatten” them when performing hash joins.

need to flatten c.ID to join c.name.
SJoin

/

s 7 X {107,5,15)

Scan + Semijoin

Account c.name Subplan producing
b.ID X {c.IDs}

Data 13
Systems
Group

ASPJoin Example

{c.IDs, c.names} Hash Table

77>X_ {(107, Noura), (5 Alice), (15, Ken)} key/c.ID value/name
B 5 Alice
15 Ken
ASPJoin 107 Noura

3. Probe .Build T 1 .Accumulate
v
Aocumulate
. semijoin maskKk on .
Scan Factorized Yol Factorized Table
Table . p5 eee p15 cee p107 eee

1 1 1

/ X {107,5,15} Account c.name

1. Factorization v/
2. Sequential scansv

3. Avoid full scansv/ L Scan
Scan + Semijoin Account b

(b)->(c) Transfer name = Lix

SJoin

Example Microbenchmark Experiment

MATCH (a:Comment)<-[:Likes]-(b:Person)-[:Likes]->(c:Comment)

WHERE b.ID < X

RETURN min(a.ID), min(b.ID), min(c.ID)

» LDBC 100: 220M Comments & 0.5M Person nodes, 242M Likes edges

» 8 threads, 64GB RAM

Selectivity | Kuzu Kuzu-INLJ | Umbra
0.01% 0.33s 0.01s 1.90s
0.1% 0.41s 0.11s 4.05s
1% 0.96s 1.04s 12.30s
10% 3.89s 10.39s 230.35s
100% 31.98s 92.35 TO

Data
Systems
Group

More in the Paper

» Extension to worst-case optimal joins for “cyclic” joins

» How we generate query plans

> Overview of other system components

Data
Systems
Group

KUZU* Graph Database Management System

Xiyang Feng™ GuodongJin™ ZiyiChen ChangLiu Semih Salihoglu
{x74feng,guodong jin,z473chen,c liv, semih.salihoglu}@uwaterloo.ca
University of Waterloo
Canada

ABSTRACT
Datasets and workloads of popular applications that use graph
database management systems (GDBMSs) require a set of storage
and query processing features that RDBMSs do not traditionally
optimize for. These include optimizations for: (i) many-to-many
(m-n) joins; i) cyclic joins; (i) recursive joins; iv) semi-structured
data storage; and (1) support for universal resource identifiers. We
present Kiizu, a new GDBMS we are developing at University of
Waterloo that aims to integrate state-of-art storage, indexing,
query processing techniques to highly optimize for this feature set.
‘This paper serves the dual role of describing our vision for Kiizu
and the system’s factorized query processor, which is based on two
design goals: () achieving good factorization structures under m-n
joins; and (i) ensuring sequential scans that avoid entire scans of
columns and join indices when possible. As we show these two
goals can sometimes conlict and we describe our core binary and
‘worst-case optimal (multiway) join operators that simultaneously
achieve both goals. Kirzu is actively being developed to be a fully
functional open-source DBMS with the goal of wide user adoption.

1 INTRODUCTION
Modern GDBMSs adopt a graph/network data model and SQL-
like high-level query languages that have several graph-specific
constructs, such as arrows to describe joins and Kleene star to de-
scribe reachability between records. At their cores, GDBMSs are
relational in the sense that they map their query language con-
structs to relational operators, such as join, project, filter, or group
by, that process and output sets/relations of tuples. In practical
use, GDBMSs power several analytics-oriented applications that
are popular in fraud detection systems, recommendation engines,
‘master data and knowledge management, among other domains.
‘The workloads of these application require several storage and
processing features that existing RDBMSs are generally not opti-
‘mized for. These features include: (i) many-to-many (m-n) joins; (i
cyelic join queries, such as when finding cyclic graph pattens; i)
recursive joins, such as those used for reachability computations;
(iv) ability to store semi-structured data, ie., whose columns/prop-
erty names and types are not defined to the system apriori; and

gy e e perces 0]

Catim

Figure 1: Left: columnar storage of Kitzu. Right: flat and
factorized output of the 2-hop query in Example 1.

survey paper [28], and developing our group’s previous system
GraphflowDB (12, 15, 18, 19), from which it differs in many impor-
tant aspects. was an in-memory
prototype system we used for our research agenda. Instead, Kiizu
aims to be a fully functional, user-facing, and a highly scalable
GDBMS, which was the most pressing challenge of users in our sur-
vey [28). To that end, Kizu i disk-based and scales out of memoy
I disk Key and join indices, and
more robust and scalable join capabilities than GraphflowDB. In
addition, Kitzu is transactional and aims to provide the core DBMS
functionalities to be user-facing. In ts current usage vision, Kizu is
an open source! embeddable library suitable for quickly developing
pipelines in the graph data science ecosystem. This is inspired by
DuckDB [1, 26] and originally by SQLite [3] 2.
‘This paper focuses on Kixzu's processor, which is block-based as
in moder analytical DBMSs and further aims to satisfy two goals:
(i) Intermediate relations of m-n joins should be factorized (23],
ie, represented as Cartesian products instead of flat tuples.
(i) Seans should always be sequential and when possible only
scan necessary blocks from base columns or join indices.

in conflict
even in very simple queries:

Exameiz 1. Consider the query below that asks for the owners
of the source and destination accounts of each 2-hop money transfer
facilitated by Karim’s accounts:

(1) storage and processing of universal (URIS),
¢hich entities in knowledge d
as RDF-style triples. This paper presents Kiizu, a new GDBMS that
we are developing at University of Waterloo that aims to optimize
these features through the integration of existing and novel state-
of-art storage, indexing, and query processing techniques.
Kirzu's design is informed by our insights from discussions with
‘many users of GDBMSs, which we previously published as a user

Kz Cbright + to know) i Sumerian word for"wisdom” [13].
“Equal contributions.

FATCH (c:Ace)-[12:Trnsfr]->(a:Acc)-[¢1: Transfer]->(b:Acc)
“Karin' RETURN c.owner, b.ouner

Consider a columnar storage that we assume in this paper, where both
adjacency lists and node properties are stored in columnar structures
as in Figure 1. Consider a k-regular database, where a node o has k
outgoing/incoming neighbors fo(;1 by, - 0(i k. f/byh where vgij f/b)

Ve system is planned to be open sourced n th Lt quarter of 2022,
E by other .

Team

Data
Systems
Group

Anurag
Chakraborty

Ziyi Chen

Mushi Wang

Chang Liu

17

Honorary Team Members

Pranjal Gupta

18

pip install kuz
(7
/1]

O #
N

W
ebsite

https://kuzudb.com/

