L]

Unifying Query Interpretation
and Compilation

Philipp M. Grulich, Aljoscha Lepping, Dwi Nugroho, Varun Pandey,
Bonaventura Del Monte, Steffen Zeuch, Volker Markl

Three Query Compilers

The NebulaStream Platform: Data and Applicatiol
Management for the Internet of Things

Steﬂen Zeuch“ Ankm Chaudhary’ Bonaventura Del Monte' Haralampos Gavriiliis*

ios Giourouki P M. Grulich' Sebastian Bre' Jonas Traub'* Volker Markl**
*Technische Universitat Beriin “DFKI GmbH
ABSTRACT Numberat =1 =5 =10
The Internet of Things (IoT) presents a novel computing Producens — 20 — 0 — s
architecture for data ' distrbuted, highly =

dynamic, and heterogencous envisonment. of masive scale
Applications for the 10T introduce new challenges for inte-
grating the concepts of fog and cloud computing a5 well
pasoe setmorks I coa usklod caviromces. In hi papes
nges and ontline how existing
To adires thso halln

major chal

4 e s Tine (minutes)
wd ‘,,(,h,..,,‘,,..,.b i gl Figure 1 10T application using cloud-centric SPE.
s with poteatially

data management system needs

ons opration. In o e, wo demnsirte U devions. .
effectivencss of our approach by providing carly results on t systems are ot yot
pastial aspects.
1. INTRODUCTION
O the ot dcade, the ot ofproccd dta s

des. Recently, ¢ prior o applying
ks 0] st b sloal ot e procaming, Parsig pimis

i wil ug 10T applications, which need to

‘The explosion in the number of connected devices trig-
gers the emergenco of novel datardiven applications. These

Ermlcations ripirs Lo abuncyy ocaties avarenass, wile

15 on potentially millons of distributed data sources. To

att oty ncrantes

Thi il s publhe e Cesine Commons Arbson Licese ot Jof gk csed a5
Sopltmeaeayloy WAy s feuls i o oy ncvsing bacs Yithin Kaika

pomiicion S Dol 14 ¥l Monley e ot I Oraall o iment shows that centralized cloud ap-
,4~»a~m,h,,(,.‘ﬁ",‘.,,;,,..‘,m.,,..,. i) s CIDR S0 e s ot e o 16T apliation o ths e
ey 215, 3080 A, Netera IoT applications require a new system.

Grizzly: Efficient Stream Processing
Through Adaptive Query Compilation

Philipp M. Grulich! ~ Sebastian Bre§!

Janis von Bleichert! Zongxiong Chen?
Technische Universitat Berlin “DFKI GmbH *HPI, University of Potsdam

ABSTRACT

12 et din e iy Kl s mlemwh—
‘model and do

optmizaions. This it he tlzaton i e
and neglects changing data characteristis at runtime.

aper, we present Grizzly, a novel adaptive query
compilation-based SPE, to enable highly eficient query ex-
ecution. We extend query compilation and task-based par-
aﬂehzzunn o the e

Steffen Zeuch'? Jonas Traub!
Tilmann RabP® Volker Markl"?

Figure 1 Yoot Steaming Benchmar (8 Threds

such as Flink [15] and Storm [66] scale-out executions to
achieve high throughput and low-latency. However, recent
modem

ing and apply adaptive compilation to enable runtime re-
npumlnnnn; “The combination of light-weight statistic gath-

hardware (76, 78]. The authors identified three main rea-
sons for this. First, these systems cause many instruction

ering with

they us

Our

SPEs by up to an order of magnitude in throughput.

Pl . Gl et B Stcllen Zvch o Tra,Jni

von Bleichert, Zongxiong Chen, Tilmann Rabl and Volker MarkL
20, etasys Bl h Adaptive Query

del. Second, they cause many
because they rely on managed runtimes. Third, they uti

nating these bottlenecks in hand-written implementations
of stream processing queries, Zeuch et al. 76] showed a sig-
i However, to

oo Mgt of i SHEDD M) Yoo 100
USA. 17 pages. hips:

Pt [y

1 INTRODUCTION

Over the last decades, the requirements of data processing
hanged significantly. Real- dyt x

hand-code query plans i impractical and cumbersome in
practice. For database systems, Newnann [55) introduced
a

general query H

I i g, v s Grcly’ e first adaptive,

cution of long-running queries over unbounded, continu-
ously changing, high-velocity data streams. Common SPES

@ on multi-
Core sysems. Grizly combines he generality and esse-of
use functionality of SPEs with the efficient hardware uti-
lization of To reach this goal, we tackle

Permission 1o make digial or hard copiesofall o part of this work for
personal or clsssoom use is granied without fee provided tht copies
e ot e o distributed for profit o commercal advantage and tha

for components of this work owned by ohers than the author() must
e homored, Absracting with credit i permited. To copy atherwise, or

three fundamental challenges: Fist, the semantics of stream
processing are fundamentally different from relational al-
gebra. Data streams are conceptually unbound and need
to be discretized into finite windows. Windowing seman-
pe

SIGMOD'2, June 1419, 200, Frlnd, O,
o2 Copyigh ld by e e waterh Pt s

110 o35 1500
ape/do.org 10.1145:318464, 2389730

. £
time-based ‘windows), and window func-
tions (e.g, aggregations). The cyclic control flow between
these components makes it hard to apply state-of-the-art

i g com/ T Brlin DIMAgizly-prototype

CIDR 2020

SIGMOD 2020

Babelfis

: Efficient Execution of Polyglot Que

Philipp Marian Grulich Steffen Zeuch Volke:
Berl

DFKI GubH DFKI GuubH

ABSTRACT Deyinonvor Bser

mains, have different levels of expertise, and prefer different pro-
i,

aditional data materilization between execution engincs.

iead of TPC-H Que: Python UDE.
sy i prcin ngos wppt e S e

102125]

i i ol S g e of B,

languages.
nd

s4.67,93)
frameworks (1,72,97] The performance penalty originates rom the

£SQL . th

With Babelfish.

opimiation. Consequently, dalabase experts oficn ecommend

Philp Marin Grulic,Stefen Zeuch, Volker Markl.Babelfis:
Bkt Samuonf ol Qs PVLDR. 1501 16210222
1077838596 349501

FULDB Ao Ay
he

“To cope with the incffciency of polylot queris, three.
ent approaches have been proposed. Frst, multiple A,,mdm

I 9,99,107). 1

e wiich e bard o excue iy (1), Scond domin:

i i it

1 INTRODUCTION

26, 25570 The gt o sabeed i

Thisd

of UDFs in native q
a[17,25.26,5

web-devel

Thus,

c Thus,

InFigure 1.

e

libraries [109],and o increase modularty and testabilty (8] Today,

o e exend THC.H Query 6 by Py D i o

e s copy et . o oy s by

and the polyglot exceution cngine. Overall we notice three.
by it e caerv gty v e U s

VLDB 2022

Take Away

Our query compilers enable high performance
through data and hardware-tailored specialization.

Take Away

Our query compilers enable high performance
through data and hardware-tailored specialization.

However, query compilers lead to high system complexity and
require a high engineering effort!

Take Away

“[Query Compilation] is great for
performance, but it is difficult for students

to maintain and debug the code.”
April 2021, Database Deep Dives with Andy Pavlo

Decreasing Industry-Adoption

% “Code generators are harder to build and debug then

. interpreted-engines.”
dqtqbrles Sigmod 2022, Photon: A Fast Query Engine for Lakehouse Systems

“Query Compilation increases engine complexity, makes it
FIR EBG]:!F harder to onboard new engineers, and retain high
development velocity.”

PVLDB 2022, Photon: A Fast Query Engine for Lakehouse Systems

“Use cases where codegen provides clear benefits,

outweighing compilation delays, decreased developer
@?Velox ghing comp y P

productivity, and debuggability are [still] under investigation.”
PVLDB 2022, Velox: Meta’s Unified Execution Engine

Let's take a step back!

Let's take a step back!

Could we unify interpretation and compilation?

Goals

1. Push-based query interpretation
e Alignes control and data-flow within execution.

e Fits well with task/morsel-driven parallelization.

Goals

1. open

1. open

Aggregat“’“

3. close

3. close

10

1. Push-based query interpretation

2. Native Operator Implementations
e Support for standard control flow, virtual

functions, abstractions.

e Native support for debugging and testing.

Goals

class Selection : public ExecutableOperator{

void execute (RuntimeContext& ctx, Tuple& tuple){
// calls child operator only if expression returns true
if (expression->execute(tuple))
child->execute(ctx, tuple);

1%

class LessThanExpression : public Expression{

Value execute(Tuple& tuple){
auto leftValue = leftSubExpression->execute(tuple);
auto rightValue = rightSubExpression->execute(tuple);
return leftValue < rightValue;

%

11

Goals

1. Push-based query interpretation

Compiler Backends

2. Native Operator Implementations Executable
Query Plan

—1 [] :
. . T Intermediate
3. Automatic query compllatlon T] Representation

® Generate IR from interpretation-based operators.

® Selects compilation backend depending on specific

workload requirements.

Summary:
v/ Framework with focus on developer experience.

v IR to target specialized code-generation backends.

Queries/s (Compile
+ Runtime) [log]

Interpreter Backend Low-Latency Backend

1k
=
100 B
o0
=)
10 _g
=

—_

QU Q3 Q6

(a) Short-Running Ad Hoc
Queries (TPC-H SF 0.01)

Tuples/s [log]

Conclusion

5
5 2 W

—_

7

/|
/|
%
/|
/|
%
%
/
/|
%

Filter Window

(b) Long-Running
Streaming Queries

UDF Invoca-

tions/s [log]

High-Perf. Backend @ ® UDF Backend

/|
/|
/|
/|
/|
/|
/|
%
/|

Distance Crime

(c) UDF-based
Queries

o |iif!"! :!;.!..5,,!

"||| 1 il
l. l| X

[o] '..|| I

13

