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Take Away

Our query compilers enable high performance
through data and hardware-tailored specialization.



Take Away

Our query compilers enable high performance
through data and hardware-tailored specialization.

However, query compilers lead to high system complexity and
require a high engineering effort!



Take Away

“[Query Compilation] is great for
performance, but it is difficult for students

to maintain and debug the code.”
April 2021, Database Deep Dives with Andy Pavlo




Decreasing Industry-Adoption

% “Code generators are harder to build and debug then

. interpreted-engines.”
dqtqbrles Sigmod 2022, Photon: A Fast Query Engine for Lakehouse Systems

“Query Compilation increases engine complexity, makes it
FIR EBG]:!F harder to onboard new engineers, and retain high
development velocity.”

PVLDB 2022, Photon: A Fast Query Engine for Lakehouse Systems

“Use cases where codegen provides clear benefits,

outweighing compilation delays, decreased developer
@?Velox ghing comp y P

productivity, and debuggability are [still] under investigation.”
PVLDB 2022, Velox: Meta’s Unified Execution Engine




Let's take a step back!



Let's take a step back!

Could we unify interpretation and compilation?



Goals



1. Push-based query interpretation
e Alignes control and data-flow within execution.

e Fits well with task/morsel-driven parallelization.

Goals

1. open

1. open

Aggregat“’“

3. close

3. close
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1. Push-based query interpretation

2. Native Operator Implementations
e Support for standard control flow, virtual

functions, abstractions.

e Native support for debugging and testing.

Goals

class Selection : public ExecutableOperator{

void execute (RuntimeContext& ctx, Tuple& tuple){
// calls child operator only if expression returns true
if (expression->execute(tuple))
child->execute(ctx, tuple);

1%

class LessThanExpression : public Expression{

Value execute(Tuple& tuple){
auto leftValue = leftSubExpression->execute(tuple);
auto rightValue = rightSubExpression->execute(tuple);
return leftValue < rightValue;

%
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Goals

1. Push-based query interpretation

Compiler Backends

2. Native Operator Implementations Executable
Query Plan

—1 [ ] :
. . T Intermediate
3. Automatic query compllatlon T ] Representation

® Generate IR from interpretation-based operators.

® Selects compilation backend depending on specific

workload requirements.



Summary:
v/ Framework with focus on developer experience.

v IR to target specialized code-generation backends.
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