Towards Adaptive Storage Views
In Virtual Memory

Felix Schuhknecht and Justus Henneberg

Johannes Gutenberg University Mainz, Germany
iInfosys.informatik.uni-mainz.de

CIDR 2023

http://infosys.informatik.uni-mainz.de

A Traditional Storage Engine

column

/

A Traditional Storage Engine

column

/

68
42

10
13

89
99

17
12

34
38

53
49

51
59

8

10

<«— Some data

A Traditional Storage Engine (in Main-Memory)

physical column

99 I«—— some data stored on
physical memory pages

A Traditional Storage Engine (in Main-Memory)

physical column

virtual memory mapping on the whole column

A Traditional Storage Engine (in Main-Memory)

physical column

scan
N}

virtual memory mapping on the whole column

A Traditional Storage Engine (in Main-Memory)

physical column

scan
N}

full view covering [-00,00]

A Traditional Storage Engine (in Main-Memory)

physical column

lumn
R

scan the whole co
w
AN

full view covering([-c0,00])

~
S5

A Traditional Storage Engine (in Main-Memory)

physical column

Index access
auxiliary
index structure

full view covering [-00,00]

Alternatives

physical column

Why not use the index 17
that is already in place? |...I5... /

full view covering [-00,00]

The Index of the OS

physical column

page table

full view covering [-00,00]

Partial Virtual Views

physical column

full view covering [-00,00]

Partial Virtual Views

physical column

42 |& mmap()

99 |-¥ mmap)

a partial view s
covering [8, 17]\ |...5o....

59 |- mmap()

full view covering [-00,00]

Partial Virtual Views

physical column

42 |4 mmap()

a partial view —
covering [8, 17]

Y mmap)

full view covering [-00,00]

Partial Virtual Views

physical column

Scan

v

a partial view
covering [8, 17]

full view covering [-00,00]

How to Create Partial Views? Adaptively!

Q1: [40,70]

\ / 22

1. Find best existing view(s) 10
to answer the query 13

[a¥2}

How to Create Partial Views? Adaptively!

Q1: [40,70]

\

2. scan and filter for [40,70]

[a¥2}

How to Create Partial Views? Adaptively!

Q1: [40,70]

\ / ?12

3. Create new partial view
covering [40,70] as side-product

How to Create Partial Views? Adaptively!

Q1: [40,70]

\ / ?12

4. Does the new view
improve our situation?

Yes — keep it!

How to Create Partial Views? Adaptively!

Q2: [50,55]

’

Next query can utilize :
the new partial view

v

[40,70]| 49

Virtual Views vs Traditional Counterparts

140
Explicit (Zone Map) i
120 - Explicit (Bitmap) I -
Explicit (Vector of Page-IDs)
A 100 - Virtual View -
o 980 r ~
=
= 60 - —
-
Y 40 + _
20 - ~
0

0.65 1.27 253 4.97 9.71 18.48 33.55

Index-Selectivity [percentage of qualifying pages]

Query Response Time using Adaptive Views

Data distribution:

600

Runtime [ms]

Scanning Views

Fullscan

=
e

0 50 100

150

Query sequence

200

Summary

Automatic
Query Routing:

Adaptiv
View Maintenance:

ptimal

Scan Performance:

: [I,u]

Towards Adaptive Storage Views in Virtual Memory

Long Version: https://arxiv.org/abs/2209.01635

Felix Schuhknecht

Technical details and optimizations

Single-view vs multi-view query answering
Efficiently handl

2209.01635v2 [cs.DB] 6 Dec 2022

INg updates

arXiv

d

Evaluation under various data and query distributions

Code: https://qitlab.rlp.ne

t/fschuhkn/adaptive-virtual-storage-views

Johannes Gutenberg University
Mainz, Germany
schuhknecht@uni-mainz.de

ABSTRACT

Traditionally, DBMSs separate their storage layer from their in-
dexing layer. While the storage layer physically materializes the
database and provides low-level access methods to it, the indexing
layer on top enables a faster locating of searched-for entries. While
this clearly separates concerns, it also adds a level of indirection
to the already complex execution path. In this work, we propose
an alternative design: Instead of conservatively separating both
layers, we naturally fuse them by integrating an adaptive coarse-
granular indexing scheme directly into the storage layer. We do so
by utilizing tools of the virtual memory management subsystem
provided by the OS: On the lowest level, we materialize the data-
base content in form of physical main memory. On top of that, we
allow the creation of arbitrarily many virtual memory storage views
that map to subsets of the database having certain properties of
interest. This creation happens fully adaptively as a side-product
of query processing. To speed up query answering, we route each
query automatically to the most fitting virtual view(s). By this, we
naturally index the storage laer in its core and gradually improve
the provided scan performance.

1 INTRODUCTION

Classical DBMSs are separated into individual layers, where each
layer serves a specific purpose. Two examples of this are the stor-
age layer and the indexing layer. On the lowest level of the stack,
the storage layer is responsible for physically materializing and
‘maintaining the database. This includes providing low-level access
methods to the individual records, such as getRecord(recordID) or
getRecordIterator(). However, the storage layer docs not have a

notion of the semantics of the records, i.e., it cannot be asked to
return records with a specific property. This is the responsibility of
the indexing layer sitting on top of the storage layer. It maps proper-
ties, such as a specific value range, to a location in the store, where
records with the property can be found. Consequently, it provides
a high-level interface of the form getRecordsti thvalue (keyRange),
which translates the keyRange to a list of qualifying recordIDs and
utilizes getRecord(recordiD) of the storage layer to retrieve them

On the one hand, such a separation of concerns yilds a clean
system design, which is easy to maintain and to extend. However,
on the other hand, introducing individual layers also comes at the
cost of increasing the size and complexity of the system stack. This
causes undesirable execution overhead by having to go through
these layers during query processing.

In this work, we question whether strictly separating storage
layer and indexing layer is reasonable at all, as both components are
so tightly coupled by nature. We propose an alternative approach
in the following: Instead of asking an indexing layer to point to
the relevant parts of the database and to make the storage layer
retrieve them, the storage layer should provide semantical (partial)

Justus Henneberg
Johannes Gutenberg University
Mainz, Germany
henneberg@uni-mainz.de

views on (subsets of) the database in the first place. Based on their
predicates, all incoming queries are then routed only to the relevant
view(s) in order to be answered, reducing the amount of data that
need to be retrieved from the lowest layer of the stack already.

Figure 1: The table representation in our adaptive storage
layer. In addition to the full virtual view, each column pro-
vides two partial views indexing only subsets of the data.

11 Virtual Views

Of course, such a solution could be engineered in software by
integrating some sort of auxiliary coarse-granular index structure
into the storage laer. However, this would just migrate the level of
explicit indirection from the indexing layer to the storage layer. As
we target pure in-memory systems, we have a more sophisticated
option available, which is strongly connected with how memory is
represented in the system: By default, when allocating a memory
areato hold our database, we actually allocate virtual main memory
that is internally mapped to physical main memory by the OS.
‘Thus, this virtual memory area resembles nothing but a view on
the physical memory underneath. By default, this virtual memory
view, which is segmented into pages, spans the entire physical
memory database. However, this is not necessarily required to
be the case: Using a technique called memory rewiring [15], it is
possible to create virtual memory views that map only to a subset
of the potentially scattered physical memory. If the underlying data
is somehow clustered, this way of indexing can be very effective.
Additionally, it is possible to update these virtual views freely at
runtime, providing a large amount of flexibility, e.g. for reflecting
updates. Also, multiple views can map to shared portions of physical
memory, allowing us to create partially overlapping views.

Based on these observations, we (1) propose a storage layer
design as visualized in Figure 1 for a columnar layout. In addition
to maintaining a full virtual view denoted as vy, co]. Which covers
the entire physical column, we allow the creation of multiple partial
virtual views vyy,,1. Each partial virtual view then indexes only the
portion of the column that contains values within the range [1,u]

https://arxiv.org/abs/2209.01635
https://gitlab.rlp.net/fschuhkn/adaptive-virtual-storage-views

