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the physical page. Only if none of these values fall into [0,1], we
are allowed to remove it from the index.

2.5 Querying Memory Mappings
In order to update our partial views as described in Section 2.4, we
need to obtain the current mapping between virtual pages and phys-
ical pages. Fortunately, the Linux kernel exposes all memory map-
pings through the /proc virtual �lesystem. For each process with ID
PID, mapping information is listed in the virtual �le /proc/PID/maps.
The �le has the format
address perms offset dev inode pathname

08048000 -08056000 rw-s 00002000 03:0c 64593 /dev/shm/db

where the �rst three columns contain the mapped virtual address
range (address), the permissions (perms), and the o�set into themain
memory �le (offset). As parsing this �le is costly if a su�cient
amount of mappings exist, we do not want to perform it frequently.
Instead, we parse the �le only once before applying a batch of
updates. We materialize the parsed mappings page-wise in a bi-
directional map (Boost bimap), which is maintained from user-space
during the update process. After the batch of updates has been
processed, we can safely discard the bimap again.

3 EXPERIMENTAL EVALUATION
In the following, we �rst �rst justify our design based on a micro-
benchmark (Section 3.1). Then, we evaluate the behavior and perfor-
mance charactertistics of the adaptive storage layer (Section 3.2, 3.3,
and 3.4). We perform all experiments on an Intel Core i7 12700KF @
5GHz with 64GB of DDR5-4800 RAM, where we activate only the
eight performance cores in the bios. The OS is a 64-bit Ubuntu 22.04
LTS with a vanilla Linux kernel in version 5.15. Note that our code
requires a tmpfs [17] �lesystem being mounted, which is by default
the case under /dev/shm/ in the case of Ubuntu. Our adaptive layer
purely operates with 4KB small pages. No root permissions are
required to execute our code. However, we increase the amount of
allowed memory mappings from the default of 216 � 1 to 232 � 1.
Discard and replacement tolerance are both set to 0 in all experi-
ments. Apart from that, in all experiments, we report the average
time of three runs.

Apart from a uniform distribution, we run experiments on the
three data distributions shown in Figure 2, re�ecting clustered
data distributions, as seen in time series or sensor data. The G axis
shows the pageID and the ~ axis shows the generated values. The
sine distribution cycles every 100 pages, whereas for the sparse
distribution, 90% of the pages are �lled with zeros.

(a) Linear dist. (b) Sine dist. (c) Sparse dist.

Figure 2: Clustered data distributions.

3.1 Partial Views: Explicit vs Virtual
We start by experimentally comparing the query performance of a
partial view, where the qualifying pages are indexed explicitly, to

that of a virtual partial view. For the explicit partial view, we test
three possible variants: Variant “Zone Map” stores the observed
minimum and maximum value of each page in-place at the begin-
ning of the page, before the actual values are materialized. During
a scan, non-qualifying pages are simply skipped. Variant “Bitmap”
maintains a separate bitvector, in which a one denotes that a page
quali�es. A lookup basically results in a scan of the bitvector with
subsequent jumps into the column for each qualifying page. Vari-
ant “Vector of Page-IDs” maintains a vector containing only IDs
of qualifying pages. A lookup utilizes the IDs to locate the ac-
tual pages in the column. Note that this variant can bene�t from
prefetching to speed up lookups to subsequent pages. Thus, when
starting to process the page at address pages[i], we already advise
to prefetch the next page at address pages[i+1] using the GCC
intrinsic __builtin_prefetch(pages[i+1], 0, 0). Also, we include
the Variant “Physical Scan”, which resembles scanning a consecu-
tive memory area, that has been allocated traditionally with new and
already contains all qualifying pages. This resembles an arti�cial
optimal baseline.

Figure 3: Query performance of explicit vs virtual views.

In the experiment, we allocate a column consisting of 1Mpages of
size 4KB �lled with uniformly generated random 8B integers in the
range of [0, 100M]. We now create a single partial view that indexes
all pages containing values in the range of [0,:], where we vary :
in logarithmic steps to simulate di�erent index selectivities from
: = 1,250, indexing 0.65% of all pages, up to : = 80,000, indexing
33.55% of all pages. After creating the partial view, we also update
10,000 uniformly selected entries to simulate a change of the partial
view. This can impact the query performance, as depending on the
variant, the updates might scatter the order in which pages are
indexed. Finally, for each : , we then answer a query selecting the
range [0,:/2], to select only 50% of the data, and report the runtime.
Figure 3 shows the results for all four variants. Using zone maps to
explicitly index the pages is in all cases themost expensive option, as
the meta-data of all pages must be inspected, involving 1M address
translations. The bitmap and the vector approach perform slightly
better. In all cases, virtual partial views clearly win, as it has the
least code complexity and naturally exploits hardware prefetching.

3.2 Adaptive Query Processing
Let us now see how our adaptive storage layer performs query
processing and how it dynamically creates and utilizes partial views.

In Figure 4, we start with an evaluation of the single-view mode.
We allow the system to create up to 100 views adaptively and test
three clustered distributions, namely sine, linear, and sparse, as

Data distribution:
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Traditionally, the storage engine of a DBMS exposes its entire
database to the surrounding system components. To limit query
processing to parts of interest, additional index structures must
be created on top. While these index structures certainly speed
up query processing in a large variety of situations, unfortunately,
they add a level of physical indirection to query execution. This
indirection must be resolved at runtime, which causes unpleasant
overhead. Therefore, in this abstract, we present a way to naturally
fuse indexing and storage: The storage engine maintains multiple
coarse-granular views for all tables, each covering a subset of the
database with a certain property of interest. By realizing views
through the virtual memory management subsystem of the OS, they
cause zero overhead at access time, and do not require the table to be
physically replicated. Our prototype creates views adaptively to best
�t the overall query workload, and routes each query automatically
to the best �tting views for scanning during query processing.
Adaptive Virtual Views. Figure 1 visualizes the concept for one
full view (indexing all data) and two partial views indexing only
portions of the data with certain properties (indexing only blue
shapes, or only circles, respectively). All views map to (portions of)
the very same physical memory area, in which the entire dataset
is materialized. If we wanted to �nd only purple circles, we would
scan the partial view indexing circles instead of the full view, as it
matches our request best.

■ ●▲ ● ● ● ■ ■ ● ▲

● ● ● ● ●▲ ● ■ ●■ ●▲ ● ● ● ■ ■ ● ▲
Full view (covering the entire column) 

physical memory

● ●

Scan

Partial view 
(blue shapes)

Query Routing

Partial view 
(purple circles)

create new 
partial view

virtual memory

Partial view 
(circles)

best view

View Manager

Figure 1: Visualization of the architecture of our storage
layer at an example: In addition to the full virtual view, each
column provides two partial views indexing only subsets of
the data.

As a side-product of query answering, we build a new partial
view that now indexes only purple circles. On Linux, views can
be created in virtual memory via mmap in combination with main-
memory �les: Each memory page containing a purple circle will
be referenced by a newly created contiguous virtual memory re-
gion. Since mmap calls are expensive, we perform all calls from a
concurrent mapping thread, and collect adjacent relevant pages
into a single mmap invocation.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution, provided that you
attribute the original work to the authors and CIDR 2023. 13th Annual Conference on
Innovative Data Systems Research (CIDR ’23). January 8-11, 2023, Amsterdam, The
Netherlands.

The newly created view can then be utilized for future query
processing. Note that newly created partial views are only retained
by the view manager if they improve the current indexing situa-
tion. For example, if the new partial view E= covers a subset of an
existing partial view E4 , but references a similar amount of physical
memory pages, then E4 can be used to answer more queries than
E= with comparable scanning e�ort. Therefore, the view manager
will discard E= to keep the number of indexes to maintain low.
�ery Routing. To answer an incoming query using the existing
views, we support two modes of operation: In single-view mode,
we use exactly one view to answer the query, where this view must
fully cover the predicates of the query. If there are multiple views
available that ful�ll this property, we pick the view that indexes
the smallest amount of physical pages to minimize the scanning
e�ort. In multi-view mode, we potentially use multiple views to
answer a single query, provided that these multiple views fully
cover the requested range in conjunction. As physical pages might
be shared between multiple partial views, we additionally keep
track of processed physical pages to avoid scanning a page twice,
as this would lead to incorrect results.
Handling Updates. If updates happen through the full views, these
updates must be re�ected by all existing partial views to ensure
correctness. This involves potentially adding and removing pages
from each partial view that covers a value range a�ected by an up-
date using repetitive mmap-calls. As this process can become costly
when being performed for each update individually, we support up-
dating partial views with respect to an adjustable batch of updates.
If too many pages of a partial view would be changed by a batch of
updates, the view is rebuild from scratch instead.
Performance. Figure 2 shows how our adaptive partial views im-
prove the individual query response times over fully scanning all
data under a sequence of 250 range queries with varying selectivity.
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Figure 2: Performance

We test a clustered data
distribution that follows
a sine curve. We can
see that already early
on in the sequence, the
adaptively created partial
views are used by the
query processing to sig-
ni�cantly speed up scans.
Extended Version. For a
detailed presentation, discussion, and evaluation of virtual stor-
age views, please refer to the extended version of the paper [2]. All
code of this project is freely available under [1].
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ABSTRACT
Traditionally, DBMSs separate their storage layer from their in-
dexing layer. While the storage layer physically materializes the
database and provides low-level access methods to it, the indexing
layer on top enables a faster locating of searched-for entries. While
this clearly separates concerns, it also adds a level of indirection
to the already complex execution path. In this work, we propose
an alternative design: Instead of conservatively separating both
layers, we naturally fuse them by integrating an adaptive coarse-
granular indexing scheme directly into the storage layer. We do so
by utilizing tools of the virtual memory management subsystem
provided by the OS: On the lowest level, we materialize the data-
base content in form of physical main memory. On top of that, we
allow the creation of arbitrarily many virtual memory storage views
that map to subsets of the database having certain properties of
interest. This creation happens fully adaptively as a side-product
of query processing. To speed up query answering, we route each
query automatically to the most �tting virtual view(s). By this, we
naturally index the storage layer in its core and gradually improve
the provided scan performance.

1 INTRODUCTION
Classical DBMSs are separated into individual layers, where each
layer serves a speci�c purpose. Two examples of this are the stor-
age layer and the indexing layer. On the lowest level of the stack,
the storage layer is responsible for physically materializing and
maintaining the database. This includes providing low-level access
methods to the individual records, such as getRecord(recordID) or
getRecordIterator(). However, the storage layer does not have a
notion of the semantics of the records, i.e., it cannot be asked to
return records with a speci�c property. This is the responsibility of
the indexing layer sitting on top of the storage layer. It maps proper-
ties, such as a speci�c value range, to a location in the store, where
records with the property can be found. Consequently, it provides
a high-level interface of the form getRecordsWithValue(keyRange),
which translates the keyRange to a list of qualifying recordIDs and
utilizes getRecord(recordID) of the storage layer to retrieve them.

On the one hand, such a separation of concerns yields a clean
system design, which is easy to maintain and to extend. However,
on the other hand, introducing individual layers also comes at the
cost of increasing the size and complexity of the system stack. This
causes undesirable execution overhead by having to go through
these layers during query processing.

In this work, we question whether strictly separating storage
layer and indexing layer is reasonable at all, as both components are
so tightly coupled by nature. We propose an alternative approach
in the following: Instead of asking an indexing layer to point to
the relevant parts of the database and to make the storage layer
retrieve them, the storage layer should provide semantical (partial)

views on (subsets of) the database in the �rst place. Based on their
predicates, all incoming queries are then routed only to the relevant
view(s) in order to be answered, reducing the amount of data that
need to be retrieved from the lowest layer of the stack already.
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Figure 1: The table representation in our adaptive storage
layer. In addition to the full virtual view, each column pro-
vides two partial views indexing only subsets of the data.

1.1 Virtual Views
Of course, such a solution could be engineered in software by
integrating some sort of auxiliary coarse-granular index structure
into the storage layer. However, this would just migrate the level of
explicit indirection from the indexing layer to the storage layer. As
we target pure in-memory systems, we have a more sophisticated
option available, which is strongly connected with how memory is
represented in the system: By default, when allocating a memory
area to hold our database, we actually allocate virtual main memory
that is internally mapped to physical main memory by the OS.
Thus, this virtual memory area resembles nothing but a view on
the physical memory underneath. By default, this virtual memory
view, which is segmented into pages, spans the entire physical
memory database. However, this is not necessarily required to
be the case: Using a technique called memory rewiring [15], it is
possible to create virtual memory views that map only to a subset
of the potentially scattered physical memory. If the underlying data
is somehow clustered, this way of indexing can be very e�ective.
Additionally, it is possible to update these virtual views freely at
runtime, providing a large amount of �exibility, e.g., for re�ecting
updates. Also, multiple views canmap to shared portions of physical
memory, allowing us to create partially overlapping views.

Based on these observations, we (1) propose a storage layer
design as visualized in Figure 1 for a columnar layout. In addition
to maintaining a full virtual view denoted as E [�1,1] , which covers
the entire physical column, we allow the creation of multiple partial
virtual views E [;,D ] . Each partial virtual view then indexes only the
portion of the column that contains values within the range [;,D].
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• Technical details and optimizations

• Single-view vs multi-view query answering

• Efficiently handling updates

• Evaluation under various data and query distributions

Code: https://gitlab.rlp.net/fschuhkn/adaptive-virtual-storage-views 
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