
DATE WHO

The Tensor Data Platform
Towards an AI-centric Database System
Apurva Gandhi, Yuki Asada, Victor Fu, Advitya Gemawat, Lihao Zhang, Rathijit Sen,
Carlo Curino, Jesús Camacho-Rodríguez, Matteo Interlandi

AI is growing…and having an impact on applications…and DBMSand having an impact on applications…

Anatomy of next gen data-driven applications

Claim: Building a data engine with all three is hard!

Tensor Runtimes

Question: Can we build a database on top of tensor runtimes?

AI-centric Database: Outline

Tensor data representation Dates as 1-d
numeric tensor

Numeric as
1-d tensor

Def Tensor:

A multidimensional
matrix that is a
cornerstone data
structure in AI

Strings as UTF-8
2-d tensor (N x max_len)

Dates as 1-d
numeric tensor

Strings as UTF-8
2-d tensor (N x max_len)

Numeric as
1-d tensor

Def Tensor:

A multidimensional
matrix that is a
cornerstone data
structure in AI

Images as 3-d
tensors

Tensor data representation

Dates as 1-d
numeric tensor

Strings as UTF-8
2-d tensor (N x max_len)

Numeric as
1-d tensor

Def Tensor:

A multidimensional
matrix that is a
cornerstone data
structure in AI

Images as 3-d
tensors

audio as 2-d
tensors

torch torchaudio torchvideo,

EncodedTensor
PlainEncoding,
DictionaryEncoding (data tensor + 2-d dictionary metadata tensor)
ProbabilisticEncoding (data tensor + a domain dictionary)
…

Tensor data representation

DATE WHO

SQL on Images Demo

AI-centric Database: Outline

1. Support for multimodal data

The Tensor Data Platform (TDP)

Common Tensor Library

image

Performance highlights
Tensor Runtimes

CPU GPU TPU M1
Hardware

1

10

100

Spark SQL Server DuckDB RateUpDB

Sp
ee

du
p

(b
as

e/
TD

P)

TPCH SF 100
103

5
10

3

In process and 100% Python!! video audio tabular

ML
(DNN)

ML
(Classical) SQL GraphClassical ML Inference: Hummingbird

SQL: TQP

AI-centric Database: Outline

1. Support for multimodal data

2. Native support for hardware acceleration

SQL as a declarative language for Differentiable Programming
Gradients are the staple mechanism by which we learn in machine learning.

Tensor runtimes have a remarkable tool to compute gradients Automatic Differentiation

TDP extends SQL by taking advantage of automatic differentiation in PyTorch

Particularly, we add the following to SQL:
1. Trainable User Defined Functions (UDFs) and Table Valued Functions (TVFs)
2. Differentiable Relational Operators (e.g., Differentiable Group By, Aggregation, Filters, etc.)

Trainable SQL Queries
We can execute SQL queries that combines trainable operations with relational operators.

Digit Size Count

0 Small 1
Large 0

1 Small 1
Large 0

2 Small 0
Large 1

3 Small 0
Large 1

4 Small 0
Large 0

5 Small 0
Large 1

6 Small 0
Large 0

7 Small 2
Large 0

8 Small 0
Large 2

9 Small 0
Large 0

MNISTGrid Dataset
MNISTGrid Task

Compute the grouped (Digit, Size) counts from the image.

SELECT Digit, Size, COUNT(*)

FROM parseMNISTGrid(MNISTGrid)

GROUP BY Digit, Size

Trainable Query

Anatomy of a Trainable Query SELECT Digit, Size, COUNT(*)

FROM parseMNISTGrid(MNISTGrid)

GROUP BY Digit, Size

SELECT Digit, Size, COUNT(*)

FROM parseMNISTGrid(MNISTGrid)

GROUP BY Digit, Size

Anatomy of a Trainable Query

0 1 2 3 4 5 6 7 8 9
0.02 0 0.05 0 0 0.90 0 0.03 0 0

0 0.2 0 0 0.05 0 0 0.75 0 0
0 0.04 0 0.05 0 0 0 0 0.91 0
0 0.3 0.1 0 0 0 0 0.6 0 0
0 0.8 0 0 0 0 0 0.1 0 0.1
0 0 0 0.82 0 0 0.09 0 0 0.09
0 0.15 0.15 0 0 0 0 0 0.7 0

0.08 0 0.76 0 0 0.08 0 0 0.08 0
0.55 0 0 0 0 0 0 0 0.35 0.10

small large
0.2 0.8

0.83 0.17
0.3 0.7
0.9 0.1

0.95 0.05
0.3 0.7

0.21 0.79
0.34 0.66
0.85 0.15

SELECT Digit, Size, COUNT(*)

FROM parseMNISTGrid(MNISTGrid)

GROUP BY Digit, Size
Digit

Size

Digit Parser

Size Parser

Trainable UDF

Anatomy of a Trainable Query

soft_countsoft_groupby

0 1 2 3 4 5 6 7 8 9
0.02 0 0.05 0 0 0.90 0 0.03 0 0

0 0.2 0 0 0.05 0 0 0.75 0 0
0 0.04 0 0.05 0 0 0 0 0.91 0
0 0.3 0.1 0 0 0 0 0.6 0 0
0 0.8 0 0 0 0 0 0.1 0 0.1
0 0 0 0.82 0 0 0.09 0 0 0.09
0 0.15 0.15 0 0 0 0 0 0.7 0

0.08 0 0.76 0 0 0.08 0 0 0.08 0
0.55 0 0 0 0 0 0 0 0.35 0.10

small large
0.2 0.8

0.83 0.17
0.3 0.7
0.9 0.1

0.95 0.05
0.3 0.7

0.21 0.79
0.34 0.66
0.85 0.15

SELECT Digit, Size, COUNT(*)

FROM parseMNISTGrid(MNISTGrid)

GROUP BY Digit, Size

Digit Size Count

0 Small 1
Large 0

1 Small 1
Large 0

2 Small 0
Large 1

3 Small 0
Large 1

4 Small 0
Large 0

5 Small 0
Large 1

6 Small 0
Large 0

7 Small 2
Large 0

8 Small 0
Large 2

9 Small 0
Large 0

Digit

Size

Digit Parser

Size Parser

Trainable UDF Differentiable Relational Operators

Anatomy of a Trainable Query

soft_countsoft_groupby

0 1 2 3 4 5 6 7 8 9
0.02 0 0.05 0 0 0.90 0 0.03 0 0

0 0.2 0 0 0.05 0 0 0.75 0 0
0 0.04 0 0.05 0 0 0 0 0.91 0
0 0.3 0.1 0 0 0 0 0.6 0 0
0 0.8 0 0 0 0 0 0.1 0 0.1
0 0 0 0.82 0 0 0.09 0 0 0.09
0 0.15 0.15 0 0 0 0 0 0.7 0

0.08 0 0.76 0 0 0.08 0 0 0.08 0
0.55 0 0 0 0 0 0 0 0.35 0.10

small large
0.2 0.8

0.83 0.17
0.3 0.7
0.9 0.1

0.95 0.05
0.3 0.7

0.21 0.79
0.34 0.66
0.85 0.15

SELECT Digit, Size, COUNT(*)

FROM parseMNISTGrid(MNISTGrid)

GROUP BY Digit, Size

Digit Size Count

0 Small 1
Large 0

1 Small 1
Large 0

2 Small 0
Large 1

3 Small 0
Large 1

4 Small 0
Large 0

5 Small 0
Large 1

6 Small 0
Large 0

7 Small 2
Large 0

8 Small 0
Large 2

9 Small 0
Large 0

Digit

Size

Digit Parser

Size Parser

Trainable UDF Differentiable Relational Operators

The query combines neural and relational operators and is end-to-end differentiable

Anatomy of a Trainable Query

The standard way to tackle this problem would be to pose it as a multiple regression
problem with a single monolithic neural network

Digit Size Count

0 Small 1
Large 0

1 Small 1
Large 0

2 Small 0
Large 1

3 Small 0
Large 1

4 Small 0
Large 0

5 Small 0
Large 1

6 Small 0
Large 0

7 Small 2
Large 0

8 Small 0
Large 2

9 Small 0
Large 0

Disadvantages:
1. Entanglement of tasks (cannot separate digit classification from size classification or aggregation)
2. Cannot generalize to other tasks
3. Needs to learn from scratch what it means to group and count

The alternative: pure Deep Learning

• Datasets:
• MNISTGrid Train/Test: 5000/1000 Grids

• Training Hyperparameters (Fixed):
• Learning Rate = 0.0001
• Training Iterations = 40,000 iterations

• Architecture (Varied):
• TDP Trainable Query (860K Parameters)
• Pure Deep Learning CNN-Small (850K Parameters)
• Resnet-18 (11.1M Parameters)

• 5 runs per architecture

Our approach trains significantly faster than a purely deep learning model

Trainable Query vs pure Deep Learning

Our SQL can declaratively express Neurosymbolic [1] systems that are end-to-end trainable

[1] Neurosymbolic AI CACM oct 2022

Trainable Query

Trainable Query

https://cacm.acm.org/magazines/2022/10/264844-neurosymbolic-ai/

Summary

The space of AI-powered databases is heating up

AI-centric Database could be a leap forward. Free-ride on:
1. $B of HW/SW investments for AI
2. Multimodal support
3. Seamless integration with latest and biggest ML models
4. Novel querying paradigms such as trainable queries

Exciting future directions
1. TensorFrame API
2. Expressing some ML tasks in a more natural way
• Learning from Label Proportions

© Copyright Microsoft Corporation. All rights reserved.

Azure

Microsoft Azure Data
Gray Systems Lab

Thank you!
https://aka.ms/gsl

https://aka.ms/gsl

ML-first user experience

ML within SQL

ML-first user experience

SQL within ML

ML within SQL

TQP

Operator
Plan

Planning Layer
Tensor program for Sort

…

Tensor program for Join
Tensor program for Filter

Parsing Layer
SQL Query

TQP supports the full TPCH
benchmark
Performance highlights

Tensor Runtimes

CPU GPU TPU Browser

Hardware

IR Graph
Physical Sort
Operator

Physical Plan

1

10

100

Spark SQL Server DuckDB RateUpDB

Sp
ee

du
p

(b
as

e/
TD

P)

TPCH SF 100
103

5
10

3

100% Python!

TQP Scalability Comparison

1

10

100

10 30 100

Sp
ee

du
p

(b
as

e/
Q

P)

Scale Factor

Spark Wildfire SQL Server DuckDB RateUpDB

62
89 103

15
11

5

10
13

10

5
3

TQP: A100 with 80GB. Spark/SQLServer/DuckDB: 32 cores machine with 256GB. RateUp: Nvidia Quadro RTX 8000

1.5x
Same

perf/cost

TQ
P

ha
s

be
tte

r
pe

rf/
co

st
TQ

P
ha

s
w

or
st

pe

rf/
co

st

Differentiable Grouped Aggregation

Let’s see how we might make the “Group By + Aggregation” operation differentiable.

SELECT Fruit, Vegetable, COUNT(*)

FROM Inventory

GROUP BY Fruit, Vegetable

QueryFruit Vegetable Price
apple carrot 4.0

banana carrot 2.0

apple carrot 4.0
banana potato 3.5

Inventory

Fruit Vegetable Count

apple carrot 2
apple potato 0

banana carrot 1

banana potato 1

Query Answer

Differentiable Grouped Aggregation

Let’s see how we might make the “Group By + Aggregation” operation differentiable.

SELECT Fruit, Vegetable, COUNT(*)

FROM Inventory

GROUP BY Fruit, Vegetable

QueryFruit Vegetable Price
apple carrot 4.0

banana carrot 2.0

apple carrot 4.0
banana potato 3.5

Inventory

We can do this in three steps:
1. Relax discrete data to continuous representation.
2. Create masks corresponding to each group.
3. Perform aggregation using the mask and data.

Differentiable Grouped Aggregation

Let’s see how we might make the “Group By + Aggregation” operation differentiable.

SELECT Fruit, Vegetable, COUNT(*)

FROM Inventory

GROUP BY Fruit, Vegetable

QueryFruit Vegetable Price
apple carrot 4.0

banana carrot 2.0

apple carrot 4.0
banana potato 3.5

Inventory

We can do this in three steps:
1. Relax discrete data to continuous representation. (Assume data is pre-encoded)
2. Create masks corresponding to each group. (Needs to be differentiable)
3. Perform aggregation using the mask and data. (Needs to be differentiable)

Differentiable Grouped Aggregation

Step 1: Relax discrete data to continuous representation.

Fruit Vegetable Price
apple carrot 4.0

banana carrot 2.0

apple carrot 4.0
banana potato 3.5

Inventory

We can use One Hot Encoding (OHE) for categorical columns.

We assume data is pre-encoded to this format before being fed into our differentiable operator.

Fruit Vegetable Price

1. 0. 1. 0. 4.0
0. 1. 1. 0. 2.0

1. 0. 1. 0. 4.0

0. 1. 0. 1. 3.5

Inventory

ap
ple

ba
na
na

car
rot

po
tat
o

Differentiable Grouped Aggregation

Step 2: Create masks corresponding to each group.

With the OHE strategy of categorical data representation, creating a group mask requires only
element-wise product (which is differentiable).

Fruit Vegetable Price

1. 0. 1. 0. 4.0

0. 1. 1. 0. 2.0
1. 0. 1. 0. 4.0

0. 1. 0. 1. 3.5

Inventory

ap
ple

ba
na
na

car
rot

po
tat
o

Mask for Group: (apple, carrot)

(apple, carrot)
1.0

0.0
1.0

0.0

Differentiable Grouped Aggregation

Step 3: Perform aggregation using the mask and data.

Fruit Vegetable Price

1. 0. 1. 0. 4.0

0. 1. 1. 0. 2.0
1. 0. 1. 0. 4.0

0. 1. 0. 1. 3.5

Inventory

ap
ple

ba
na
na

car
rot

po
tat
o

Mask for Group: (apple, carrot)

(apple, carrot)
1.0

0.0
1.0

0.0

𝛴

Aggregation

2.0

Differentiable Grouped Aggregation (GROUP BY + COUNT)

Step 3: Perform aggregation using the mask and data.

Fruit Vegetable Price

1. 0. 1. 0. 4.0

0. 1. 1. 0. 2.0
1. 0. 1. 0. 4.0

0. 1. 0. 1. 3.5

Inventory

ap
ple

ba
na
na

car
rot

po
tat
o

Mask for Group: (apple, carrot)

(apple, carrot)
1.0

0.0
1.0

0.0

𝛴

Aggregation

2.0

Fruit Vegetable Count
apple carrot 2

apple potato 0
banana carrot 1

banana potato 1

Query Answer

We have only used product and sum, both of which are
differentiable.

Differentiable Grouped Aggregation (GROUP BY + SUM)

Step 3: Perform aggregation using the mask and data.

Fruit Vegetable Price

1. 0. 1. 0. 4.0

0. 1. 1. 0. 2.0
1. 0. 1. 0. 4.0

0. 1. 0. 1. 3.5

Inventory

ap
ple

ba
na
na

car
rot

po
tat
o

Summands for Group:
(apple, carrot)

(apple, carrot)
4.0

0.0
4.0

0.0

𝛴

Aggregation

8.0

Fruit Vegetable SUM(Price)
apple carrot 8.0

apple potato 0.0
banana carrot 2.0

banana potato 3.5

Query Answer

SELECT Fruit, Vegetable, SUM(Price)

FROM Inventory

GROUP BY Fruit, Vegetable

Query

Differentiable Grouped Aggregation (GROUP BY + MAX)

Step 3: Perform aggregation using the mask and data.

Fruit Vegetable Price

1. 0. 1. 0. 4.0

0. 1. 1. 0. 2.0
1. 0. 1. 0. 4.0

0. 1. 0. 1. 3.5

Inventory

ap
ple

ba
na
na

car
rot

po
tat
o

𝛴

Aggregation

3.93

Fruit Vegetable SUM(Price)
apple carrot 3.93

banana carrot 2.0
banana potato 3.5

Query Answer

SELECT Fruit, Vegetable, MAX(Price)

FROM Inventory

GROUP BY Fruit, Vegetable

Query

Softmax

Differentiable Filtered Aggregation (WHERE + SUM)

Inventory

ap
ple

ba
na
na

car
rot

po
tat
o

𝛴

Aggregation

11.51

SELECT SUM(Price)

FROM Inventory

WHERE Price > 2.5

Query

Sigmoid(h*(x – 2.5))

Fruit Vegetable Price

1. 0. 1. 0. 4.0
0. 1. 1. 0. 2.0

1. 0. 1. 0. 4.0

0. 1. 0. 1. 3.5

Case Study: Multimodal Email Search

MAIDAP has been working with MSAI to explore multimodal search capabilities for outlook.

An example of relevant data analysis:

Surakav’s multimodal support makes it easy to answer such queries.

What is the count of the different types of image attachments in outlook emails?

Regular Images Receipts Company Logos

Tensors are the de facto data structure for multimodal computation

The tensor data structure has been used to represent numerous rich entities.

Surakav can exploit tensors for multimodal query support.

Hello World

Encoder
(e.g., transformer model)

Tensor Representation
(or “embedding”)

