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Al is growing...and having an impact on applications...and DBMS

Enter your favorite chart showing how Al is
taking over the world
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Anatomy of next gen data-driven applications

1. Support for multimodal data (image, video, relational, audio, etc.)

* Not many relational system with proper image/video/etc. support
« Many specialized system are moving towards supporting “scalar” queries

2. Tight integration and interoperability with ML

* Most systems either (partially) re-implement ML features in SQL ...
* ... Or call external ML runtimes

3. Native support for hardware acceleration

« Most systems are built on single vendor tech (CUDA)
« Supporting other stacks (AMD, Apple, etc.) requires nontrivial engineering effort

Claim: Building a data engine with all three is hard!



Tensor Runtimes “§* & PyTorch

1. Support for multimodal data
« Thanks to the Tensor abstraction

2. Native support for hardware acceleration
« Large open-source communities with HW vendors involvement

3. Tight integration and interoperability with ML
* ML capabilities embedded into the system and language (e.g., autodiff)

? Question: Can we build a database on top of tensor runtimes?



Al-centric Database: Outline

1. Support for multimodal data

2. Native support for hardware acceleration

3. Tight integration and interoperability with ML



Tensor data representation
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Tensor data representation
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Numeric as Dates as 1-d Strings as UTF-8
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We leverage torch, torchaudio, torchvideo, etc, for loading data into tensor format

We have our own custom tensor class: EncodedTensor = tensor + metadata
PlainEncoding,

DictionaryEncoding (data tensor + 2-d dictionary metadata tensor)
ProbabilisticEncoding (data tensor + a domain dictionary)
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The goal of this notebook is to show how image data can be loaded on TQP and how we can use TQP capabilities to query images
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Al-centric Database: Outline

2. Native support for hardware acceleration

3. Tight integration and interoperability with ML



The Tensor Data Platform (TDP)

Starred 3k

In process and 100% Python!

Classical ML Inference: Hummingbird y TDP —
SQL: TQP

] modality
[ computation type
image || video || audio || tabular
ML ML
onN || (cassicay || SQL || Graph

Common Tensor Library

Performance highlights
TPCH SF 100
3

100

10
5

I 3

SQL Server DuckDB RateUpDB

Speedup (base/TDP)

=

Spark

o »~
Tensor Runtimes ( ) E‘/"
— |

!

Hardware

CPU
ol

TPU

M

[EN

M1 ceoe




Al-centric Database: Outline

3. Tight integration and interoperability with ML



SQL as a declarative language for Differentiable Programming

Gradients are the staple mechanism by which we learn in machine learning.
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Tensor runtimes have a remarkable tool to compute gradients Automatic Differentiation
TDP extends SQL by taking advantage of automatic differentiation in PyTorch

Particularly, we add the following to SQL:
1. Trainable User Defined Functions (UDFs) and Table Valued Functions (TVFs)
2. Differentiable Relational Operators (e.g., Differentiable Group By, Aggregation, Filters, etc.)



Trainable SQL Queries

We can execute SQL queries that combines trainable operations with relational operators.

MNISTGrid Dataset
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MNISTGrid Task

Compute the grouped (Digit, Size) counts from the image.

Trainable Query

SELECT Digit, Size, COUNT(*
FROM parseMNISTGrid(MNISTGrid
GROUP BY Digit, Size



Anatomy of a Trainable Query SELECT Digit, Size, COUNT(*

FROM parseMNISTGrid(MNISTGrid
GROUP BY Digit, Size



Anatomy of a Trainable Query SELECT Digit, Size, COUNT(*

FROM parseMNISTGrid(MNISTGrid
GROUP BY Digit, Size




Anatomy of a Trainable Query SELECT Digit, Size, COUNT(*

Digit FROM parseMNISTGrid(MNISTGrid

0 1 2 3 4 5 6 7 8 9 e _ .
002 0 005 0 0 090 0 003 0 O GROUP BY Digit, Size
0O 02 0 0005 0 0075 0 o
~ O 004 0 0O5 0 O O O0 091 0
)= 0 0301 0 0 O O 06 0 O digit_parser = CNN(out_classes=10).to(device)
» 0O 08 0 0 0O O O 01 O 01 size_parser = CNN(out_classes=2).to(device)
BNk O O 008 0 0 00 0 0 0.09
’ - 0 015015 0 O O O 0 07 O @tdp_udf("Digit float, Size float")
Digit Parser 008 0 076 0O O 008 0O O 008 O def parseMNISTGrid(x: torch.Tensor) —> torch.Tensor:
055 0 0 0O O O O 0 0350.10 # Break up grid into a batch of 9 images
grid = rearrange(x[0], "(h1l h2) (wl w2) —> (h1 wl) 1 h2 w2", h1=3, wl=3)
Size # Parse digits from images
small large parsed_digits = digit_parser(grid)
02 08 digit_domain = np.arange(10)
083 0.17 encoded_digits = ProbabilisticEncoding.encode(parsed_digits, digit_domain)
0.3 | 0.7

# Parse size from images

\ —1_ 09 0.1 parsed_sizes = size_parser(grid)

» 0.95 0.05 size_domain = np.arange(2)

E 03 | 0.7 encoded_sizes = ProbabilisticEncoding.from_encoded_data(parsed_sizes, size_domain)
N 0.21 0.79

. 0.34 0.66 return encoded_digits, encoded_sizes
Size Parser 0.85 0.15

Trainable UDF



Anatomy of a Trainable Query
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SELECT Digit, Size

FROM parseMNISTGrid(MNISTGrid

GROUP BY Digit, Size
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Anatomy of a Trainable Query SELECT Digit, Size

Digit FROM parseMNISTGrid(MNISTGrid
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The query combines neural and relational operators and is end-to-end differentiable



The alternative: pure Deep Learning

The standard way to tackle this problem would be to pose it as a multiple regression
problem with a single monolithic neural network
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Disadvantages:
1. Entanglement of tasks (cannot separate digit classification from size classification or aggregation)
2. Cannot generalize to other tasks

3. Needs to learn from scratch what it means to group and count



Trainable Query vs pure Deep Learning

» Datasets: 2 09
* MNISTGrid Train/Test: 5000/1000 Grids o 08
. . : . S 0.7
Training Hyperparameters (Fixed): :
« Learning Rate = 0.0001 &5 06
« Training lterations = 40,000 iterations @ 05
« Architecture (Varied): 3
« TDP Trainable Query (860K Parameters) § 03
» Pure Deep Learning CNN-Small (850K Parameters) %D 0.2
« Resnet-18 (11.IM Parameters) 2 o1
* 5 runs per architecture 0

MNISTGrid Training: Trainable Query vs. Deep Learning

- Trainable Query
*CNN-Small
Resnet-18

04
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Training Iteration

Our approach trains significantly faster than a purely deep learning model

Our SQL can declaratively express Neurosymbolic [1] systems that are end-to-end trainable

[1] Neurosymbolic Al CACM oct 2022



https://cacm.acm.org/magazines/2022/10/264844-neurosymbolic-ai/

Summary

& The space of Al-powered databases is heating up

lp Al-centric Database could be a leap forward. Free-ride on:

SB of HW/SW investments for Al
2. Multimodal support
3. Seamless integration with latest and biggest ML models
4. Novel querying paradigms such as trainable queries

Exciting future directions

1. TensorFrame API

2. Expressing some ML tasks in a more natural way
* Learning from Label Proportions
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ML-first user experience

ML within SQL: UDF-based
programming model

We use UDF to access the tensor API
Still end-to-end on HW accelerators

Microsoft

SELECT images
FROM Attachments
WHERE image_text_similarity("dog", images) > ©0.80

model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")

@tdp_udf("float")
def image_text_similarity(query: str, images: torch.Tensor) -> torch.Tensor:
inputs = processor(text=[query], images=images, return_tensors="pt", padding=True)
inputs.to(device)
outputs = model(*x*inputs)
scores = outputs.logits_per_image.flatten() / 30
return scores



ML-first user experience

ML within SQL: UDF-based
programming model

« We use UDF to access the tensor API
e Still end-to-end on HW accelerators

SQL within ML: Embedding queries into
PyTorch programs

 Use the right tool for the right task
« Thanks to trainable SQL queries

SELECT images
FROM Attachments
WHERE image_text_similarity("dog", images) > ©0.80

model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")

@tdp_udf("float")

def

def

image_text_similarity(query: str, images: torch.Tensor) —> torch.Tensor:

inputs = processor(text=[query], images=images, return_tensors="pt", padding=True)
inputs.to(device)

outputs = model(*x*inputs)

scores = outputs.logits_per_image.flatten() / 30

return scores

train(compiled_query, num_iterations, optimizer, mnist_grids, target_counts):
for i in range(num_iterations):
optimizer.zero_grad()

# Register MNISTGrid and perform inference with the query
tgp.sql.register_tensor(mnist_grids[i]l, "MNIST_Grid")
predicted_counts = compiled_query.run()

# Compute loss. Here we use MSE between the counts.
loss = ((predicted_counts - target_counts[i])**2).mean()

# Backpropagate and perform optimization step
loss.backward()
optimizer.step()



TQP

100% Python

TQP supports the full TPCH
benchmark

Performance highlights

TPCH SF 100
100

Speedup (base/TDP)

10
5
I I 3

Spark SQL Server DuckDB RateUpDB

[EEN

SQL Query

SELECT
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TQP Scalability Comparison
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Differentiable Grouped Aggregation

Let's see how we might make the "Group By + Aggregation” operation differentiable.

Inventory
apple carrot 4.0 SELECT Fruit, Vegetable, COUNT(*)
banana carrot 2.0 FROM Inventory
apple carrot 4.0 GROUP BY Fruit, Vegetable
banana potato 3.5

Query Answer

| Fruit | Vegetable

apple carrot 2
apple potato 0
banana carrot 1
banana potato 1



Differentiable Grouped Aggregation

Let's see how we might make the "Group By + Aggregation” operation differentiable.

Inventory
apple carrot 4.0 SELECT Fruit, Vegetable, COUNT(*)
banana carrot 2.0 FROM Inventory
apple carrot 4.0 GROUP BY Fruit, Vegetable
banana potato 3.5

We can do this in three steps:

1. Relax discrete data to continuous representation.
2. Create masks corresponding to each group.

3. Perform aggregation using the mask and data.



Differentiable Grouped Aggregation

Let's see how we might make the "Group By + Aggregation” operation differentiable.

Inventory
apple carrot 4.0 SELECT Fruit, Vegetable, COUNT(*)
banana carrot 2.0 FROM Inventory
apple carrot 4.0 GROUP BY Fruit, Vegetable
banana potato 3.5

We can do this in three steps:

1. Relax discrete data to continuous representation. (Assume data is pre-encoded)
2. Create masks corresponding to each group. (Needs to be differentiable)

3. Perform aggregation using the mask and data. (Needs to be differentiable)



Differentiable Grouped Aggregation

Step 1: Relax discrete data to continuous representation.

Inventory Inventory
apple carrot 1. 0. 1.
banana carrot 2.0 ——> 0. 1 1. 0. 2.0
apple carrot 4.0 1. 0 1. 0 4.0
banana potato 3.5 0. 1 0. 1. 3.5
(o X, x
o Q\e \Q’b(\’bo . Q,&‘O QO,@,O

We can use One Hot Encoding (OHE) for categorical columns.

We assume data is pre-encoded to this format before being fed into our differentiable operator.



Differentiable Grouped Aggregation

Step 2: Create masks corresponding to each group.

Inventory Mask for Group: (apple, carrot)
mm
1.0
2.0 0.0
4.0 1.0
3.5 0.0

With the OHE strategy of categorical data representation, creating a group mask requires only
element-wise product (which is differentiable).



Differentiable Grouped Aggregation

Step 3: Perform aggregation using the mask and data.

Inventory Mask for Group: (apple, carrot)  Aggregation
m Vegetable m (apple, carrot)
1.0
2.0 00 » ) —— 20
4.0 1.0

3.5 0.0




Differentiable Grouped Aggregation (GROUP BY + COUNT)

Step 3: Perform aggregation using the mask and data.

Inventory

Mask for Group: (apple, carrot) Aqgqgregation

m Vegetable m (apple, carrot)

2.0 0.0 > Z —
4.0 1.0
3.5 0.0

Query Answer

__Fruit | Vegetable

apple carrot 2

apple potato 0

We have only used product and sum, both of which are banana o 1
differentiable.

banana potato 1

2.0



Differentiable Grouped Aggregation (GROUP BY + SUM)

Step 3: Perform aggregation using the mask and data.

Summands for Group:

Inventory

(apple, carrot) Agqgregation
m Vegetable m (apple, carrot)
4.0 4.0
3.5 0.0

Query Answer

" __Fruit__| Vegetable

Query apple carrot 8.0
SELECT Fruit, Vegetable, SUM(Price apple potato 0.0
FROM Inventory banana carrot 2.0

GROUP BY Fruit, Vegetable banana potato 3.5



Differentiable Grouped Aggregation (GROUP BY + MAX)

Step 3: Perform aggregation using the mask and data.

Inventory Aggregation

m Vegetable m

-3 » ) —— 393
‘ Query Answer
| Fruit | Vegetable
apple carrot 3.93
SELECT Fruit, Vegetable, MAX(Price banana carrot 2.0
FROM Inventory banana potato 3.5

GROUP BY Fruit, Vegetable



Differentiable Filtered Aggregation (WHERE + SUM)

Inventory
| Fruit | Vegetable | Price _
1. 0 1 0. 4.0
0. 1 1 0 2.0
1. 0 1. 0. 4.0
0. 1 0. 1 3.5
& m«\?’& & |

Aqggreqgation

Sigmoid(h*(x — 2.5))

Query
SELECT SUM(PPice)

FROM Inventory
WHERE Price > 2.5

*

> ) —— 1151



Case Study: Multimodal Email Search

MAIDAP has been working with MSAI to explore multimodal search capabilities for outlook.

An example of relevant data analysis:

What is the count of the different types of image attachments in outlook emails?
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Surakav's multimodal support makes it easy to answer such queries.



Tensors are the de facto data structure for multimodal computation

The tensor data structure has been used to represent numerous rich entities.

Hello World
o T B Encoder Tensor Representation
O (e.g., transformer model) (Or em beddiﬂg”)
HasCO ‘
OH
OCH ﬁ

Surakav can exploit tensors for multimodal query support.



