
Shared Foundations:
Modernizing Meta’s Data Lakehouse
Biswapesh Chattopadhyay, Pedro Pedreira, Sameer Agarwal, Yutian "James" Sun, Suketu Vakharia, Peng Li, Weiran Liu, Sundaram Narayanan

CIDR’23

Pedro Pedreira - pedroerp@fb.com
Software Engineer 1/10/23

1. Recent Trends

2. Background

3. Shared Foundations

4. Consolidation Efforts

Agenda

2

Recent Trends

3

Usage Trends

● Data Explosion

● Machine Learning

● Freshness and Latency

● External Analytics

● Complex Data Models

● Richer Query Methods

4

Environmental Trends

● Disaggregation

● Horizontal Scaling

● Elastic Compute

● Power Efficiency

● Global Optimization

● Engineering Efficiency

● Direct data access:

○ Disaggregated storage

○ Open file formats

○ Open metadata APIs

5

● Diverse applications:

○ Batch

○ Interactive

○ Streaming

○ Machine Learning

Solution: Open Data Lakehouse Analytics

Background

6

Open Data Lakehouse @Meta

7

Services
(WWW) Databases

Logs Ingest

Wa
reh

ou
se

 St
ora

ge
 &

 M
eta

da
ta

Stream Processing Ba
tch

Pr

oc
es

sin
g

Int
era

cti
ve

Qu

eri
es

ML
 Tr

ain
ing

The Problem: Fragmentation

8

Language

Distribution/Runtime

Execution

Data Access

SQL dialects, functions,
entity & type metadata

Distributed execution,
shuffle, resource
management

Evaluation at node,
caching

Formats, storage,
disaggregation

SQL dialect fragmentation,
lack of expressibility

Scalability, Efficiency,
Fragmentation

Latency, efficiency, Java /
C++, dialect fragmentation

Library fragmentation, not
data driven, poor encodings

Scope ChallengesLayer

Impact and Solution

● How does this impact us?

○ Hard to maintain and enhance:

■ Poor innovation velocity

○ Inconsistent user APIs:

■ Poor user experience

● What can we do about it?

○ Building Shared Foundations!

9

Shared Foundations

10

The Solution: Shared Foundations

● Principles:

○ Fewer systems

○ Shared components

○ Consistent APIs

● Goals:

○ Engineering efficiency

○ Faster innovation

○ Better user experience

11

Consolidation Efforts

12

Language Consolidation

● Half a dozen SQL dialects being actively used at Meta:

○ Presto SQL, HiveQL (in Spark), PQL (Puma), Scuba SQL, Cubrick SQL and MySQL.

● Ideal dialect:

○ Standard-compliant

○ Rich feature set

○ Wide adoption

● Presto SQL -> CoreSQL

● Two component are needed:

○ C++ parser/analyzer library

○ Execution library

13

Execution Consolidation

● Unified execution engine: Velox

● Reusable across engines (Analytics, Stream Processing, ML, and more)

● Provides fully compatible implementation of CoreSQL.

14

Engine Consolidation - Interactive Analytics

● Many interactive analytics engines:

○ Presto, Raptor, Cubrick, Scuba

● Ideal system:

○ Full and rich SQL support -> CoreSQL

○ Operate directly on lakehouse

○ Low query latency

● Presto -> RaptorX:

○ Hierarchical caching

○ Affinity

● Data freshness:

○ Near real time support

15

Engine Consolidation - Interactive Analytics (2)

● RaptorX -> Prestissimo

○ Presto running on Velox

● Result:

○ Single engine

○ Language consolidation (CoreSQL)

○ Low latency (local caching)

○ Data freshness (NRT)

○ Efficient execution (Velox).

16

Engine Consolidation - Batch Analytics

● Batch engines:

○ Presto, Spark

● Ideal system:

○ Full and rich SQL support -> CoreSQL

○ Large scale scalability

● Presto-on-Spark

● Result:

○ Language consolidation (CoreSQL)

○ Scalability (Spark runtime)

○ Efficient execution (Velox)

17

Engine Consolidation - Stream Processing

● Programming language diversity (C++, Java, Php)

● Abstraction level (procedural, declarative - SQL-like)

● Next generation -> XStream:

○ CoreSQL (added streaming extensions)

○ Velox for execution

● Result:

○ Language consolidation (CoreSQL)

○ Efficient execution (Velox)

○ Single engine.

18

Engine Consolidation - Machine Learning

● Custom eval engine -> move to Velox.

● File format inefficiencies -> Alpha

○ Alpha available in other engines via Velox.

● Result:

○ Language consolidation (TorchArrow, CoreSQL functions)

○ Efficient and unified execution (Velox)

○ Efficient decoding (Alpha).

19

Conclusion

20

Conclusion

● Generational leap in the data infrastructure landscape:

○ More modern, composable, and consistent stack.

○ Fewer components, richer features, and better performance.

● In the process we have:

○ Deprecated several large systems

○ Removed hundreds of thousands of lines of code

○ Open sourced several components

■ Velox, DWIO, Prest on Spark, RaptorX and TorchArrow

○ Improved engineering velocity and decreased operational burden.

21

What’s Next?

● This journey is 1% finished!

○ Projects in different stages of completion.

● Unified SQL is great (CoreSQL); how about beyond-SQL?

● Consistent UDFs across engines:

○ Universal UDFs

22

What’s Next?

● This journey is 1% finished!

○ Projects in different stages of completion.

● Unified SQL is great (CoreSQL); how about beyond-SQL?

● Consistent UDFs across engines:

○ Universal UDFs

● Composability is the future of data management:

○ Language, Execution, Data Access

○ …, Optimizers?

○ Hardware acceleration

23

Thank you!

24

Q/A

25

