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General Structure of Large-scale Analytics

• Compute
• Distributed workers process local shards of 

data independently 

• Combine (optional)
• Preliminary results are locally processed 

before data exchange

• Shuffle
• Resharding and transmitting data for the 

next phase of processing
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Shuffle as Critical Component

• Encompasses CPU, bandwidth, and 
latency overhead
• Compression, serialization, message 

processing, transmission, etc.

• A rich history of tuning shuffle for 
efficient data analytics
• DBMSs, MapReduce, and graph processing

• A primary bottleneck in emerging 
cloud platforms
• Serverless and disaggregated 

memory/storage
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Challenges in Optimizing Shuffle

• Dependent on workloads
• Disk activities, combinable, aggregable, data redundancy…

• Dependent on data center architecture
• CPU performance, network bandwidth, communication locality across machines…

• Must adapt to changes
• Data center topology updates caused by network failures
• Disaggregated compute, memory, and storage
• Next-generation data center network designs are increasingly complicated
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TeShu: A Templated Shuffle Layer

• Adapts to workload and data center infrastructure changes
• Easily supports existing data analytics systems and enables future ones
• Users implement shuffle primitives as templates with unknown 

characteristics of workloads and infrastructure as parameters
• Data analytics systems instantiate templates by populating parameters

5

TeShu (parameterized shuffle templates)

Data center infrastructure

Analytics system Analytics system…



Outline

• Motivation & TeShu Vision

• TeShu Design

• Expressiveness

• Evaluation

• Future Directions
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Architecture
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Shuffle Templates

• Python-like programs with parameters below

• Example: vanilla shuffling (pull mode)
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Template parameter Description
SEND(dst, msg) Send msg to dst

RECV(src) Return data received from src

FETCH(src) Return data fetched from src

PART(msgs, srcs, partFunc) Partition msgs into dsts according to partFunc

COMB(msgs, combFunc) Combine msgs according to combFunc

SAMP(msgs, rate, partFunc) Sample msgs based on rate and partFunc

Basic communication (supporting both pull and push)
Populated by framework-native communication libraries 

Partitioning, combing, and sampling
Populated by shuffle arguments and our sampling approach

Sender template:

PART(bufs, dsts, partFunc)

Receiver template:

for s in srcs:
bufs[n] = FETCH(n)



Shuffle API

• Shuffles are instances of concurrent communication between a fixed set 
of sources and destinations

• shuffle(wId, templateId, shuffleId, srcs, dsts, bufs, 
partFunc, combFunc)

• Partition function maps a piece of data to a destination worker
• Combine function merges two pieces of data into one
• These arguments are used to populate template parameters
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IDs of worker, template, and shuffle call Sources, destinations, and data buffers

Functions for data partitioning and combining (optional)



Shuffle Management

• Involves Shuffle Manager and the application
• System operators implement shuffle templates that are stored in Shuffle Manager
• Application invokes shuffle API, instantiates templates into plans, and caches them
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Implementing Existing Shuffle Algorithms

• TeShu can express vanilla shuffling and existing shuffle optimizations in a 
few lines of code 
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Shuffle algorithm Pattern LoC

Vanilla shuffling Push/pull 5

Coordinated shuffling [CIDR ’13] Pull 9

Bruck shuffling [IJHPCA ‘05] Push 11

Two-level exchange [SIGMOD ‘20] Push 18



Adaptive Shuffling

• Sampling-enabled data center network-aware shuffle optimization
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… … ……Server level

Rack level

Cluster level

Global level

｝

A local shuffle at each level
• Pros: reduced traffic at next level by combining (benefit oversubscribed networks)
• Cons: additional shuffling and combining overhead
• Need to compare the benefit of traffic reduction and the overhead

Measure through data sampling



Data Sampling

• Selects a subset of shuffle data from each worker based on sampling rate
• Baseline: random sampling, which is inaccurate with real data when 

sampling rate is kept low
• Partition-aware sampling: samples data according to the 

destinations to evaluate reduction rate when combiner is applied
• Divides destination space into S buckets (S is calculated by sampling rate)
• Allocates each piece of data into one of the buckets based on its destination
• Selects Bucket j for sampling ( j is randomly selected and consistent across workers)
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Evaluation Setup

• Cluster: 2 racks of 10 servers, each with 16 cores @2.6GHz, 128 GB 
memory, and 10 Gbps NIC

• Network: oversubscription of inter-rack network varies (10:1, 4:1, 1:1)

• Software: Pregel+ for graph analytics

• Queries: PageRank and single source shortest path

• Datasets: UK-Web (3.7 billion edges) and Friendster (3.6 billion edges)
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Sampling Performance

• Duplication estimation on shuffled data with typical workloads

• Sampling overhead (execution time)
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Sampling rate Ground truth Part.-aware sampling Random sampling

0.9 0.1833 0.1833 0.1986

0.1 0.1833 0.1833 0.7241

0.01 0.1833 0.1832 0.9622

0.001 0.1833 0.1829 0.9965

0.0001 0.1833 0.1838 0.9997
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Adaptive Shuffling Performance

• Compared to vanilla shuffling, adaptive shuffling speeds up queries from 
3.9× to 14.7× by eliminating most of the communication cost
• Across network oversubscription scenarios, adaptive shuffling always 

identifies the optimal shuffling strategy
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Future Directions

• Co-scheduling shuffles to achieve shorter flow completion times and 
thus improve application performance

• Handling failures and stragglers with shuffle records

• Integrating with in-network techniques to apply combining and 
sampling in the network to further improve performance

• Templating shuffles for future data centers, e.g., data movement 
between disaggregated resource components
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Summary

• Tuning shuffle for large-scale data analytics is necessary but challenging 
and requires adaptiveness and portability

• TeShu provides a simple and expressive shuffle abstraction and offers it as 
a general layer to benefit various data analytics systems

• Shuffle templates and efficient sampling in TeShu enable portable and 
adaptive shuffle optimizations

• More aspects to be investigated and opportunities to be explored
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Backup Slides
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Related Work

• Riffle [EuroSys ‘18]
• External shuffle service in Spark developed by Facebook
• Merges small files to reduce random disk I/O

• Magnet [VLDB ‘20]
• Optimized shuffle service in Spark developed by LinkedIn
• Pushes shuffle data from mappers to reducers to pre-merge intermediate results 

before the reduce stage

• Remote Shuffle Service (RSS)
• Spark shuffle service with dedicated remote shuffle servers developed by Uber
• Separates shuffle data from mappers to improve reliability and scalability

• Exoshuffle
• Shuffle layer for MapReduce in Ray that easily supports state-of-the-art shuffle 

optimizations and enables pipelined shuffles
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More Related Work

• Optimizing shuffle for graph processing

• Optimizing shuffle for machine learning

• Optimizing the exchange operator in DBMSs
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