2% Microsoft

Azure Cosmos DB for PostgreSQL

Distributed SQL service built on open-source Postgres & Citus

T

Marco Slot

Principal Software Engineer at Microsoft

Azure Cosmos DB for PostgreSQL

b2 7.
Distributed PostgreSQL for modern cloud-native applications

. i

True PostgreSQL Scale out from 1 to 1000s of Built for relational
cores workloads
Not a fork Distributed query execution Transactions
Latest PostgreSQL version within 1 week Online scaling with zero downtime Primary/Foreign Keys, Joins, and

) o Constraints
50+ PostgreSQL extensions Local and Global replication of data

Custom types, stored procedures

Cosmos DB managed service platform
Global Distribution — Seamless Elasticity — High Availability — Point in time recovery — Azure integrations

Available Open Source as the Citus extension to PostgreSQL

Citus: Distributed PostgreSQL as an Extension

Citus is a PostgreSQL extension that uses planner, executor, and utility command hooks to
transparently distribute and replicate PostgreSQL tables across a shared-nothing PostgreSQL cluster.

Schema changes
Queries (reads & writes) Queries (reads & writes) Queries (reads & writes)

distributed tables
& metadata

shards

coordinator worker 1 worker 2

Fully open source: SIGMOD 21:
https://github.com/citusdata/citus “Citus: Distributed PostgreSQL for Data-Intensive Applications”

https://github.com/citusdata/citus

Citus Features & Gaps

Most PostgreSQL features
just work on Citus tables

Joins

Transaction blocks
Subqueries & CTEs
Sequences
Expression indexes
Partial indexes
Custom types
Prepared statements
Stored procedures

Time-partitioning

Distributed database superpowers
with PostgreSQL-level efficiency

Distributed & reference tables
Co-location
Scale OLTP throughput

Fast co-located joins, foreign keys, ..

Parallel, distributed queries
Transactional ETL (INSERT..SELECT)
Fast data loading (COPY)

Online rebalancing

Stored procedure call routing

Columnar compression

Some gaps remain

Schema-level sharding

DDL from any node

Automatic shard splits

Non-co-located foreign keys, triggers
Unique constraints on non-dist. column
Cross-node snapshot isolation
Geo-partitioning

Database-level sharding
Non-co-located correlated subqueries

Vectorized execution

Common workload patterns

Multi-tenant OLTP

(e.g. Software-as-a-service)

Example: Shopify Stores
Storeid
name
category
products orders
product_id line_items order_id
(Soreid Y line_item_id storeid
name product_id status
description order_id billing_address
price < store_id :) shipping_address
quantity ordered_at
line_amount Countries
country_id
Reference Table name
continent

High throughput CRUD
(e.g. loT)

l SQL Requests

Any worker node can handle distributed queries & transactions

A

. Local tables
SCEICILEIEI Vonotonic sequences

Real-time analytics
(e.g. customer dashboards)

Example:
JOIN and aggregate
pushdown

SELECT count(*) FROM
users_shard_1 JOIN
events_shard_1 using
(user_id) WHERE

=

C

|

SELECT count(*) FROM users
JOIN events USING (user._id)
WHERE

Coordinator

vents

/

= \ =

= [\
Y

"

SELECT sum(counts) FROM
data_from_workers;

SELECT count(*) FROM
users_shard_6 JOIN
events_shard_6 using

SEa (user_id) WHERE

Hybrid local-distributed databases

Coordinator
campaigns campaigns_102101
Local Local
companies companies_102008

Local

ads

Reference

Local

1

ads_102009

Reference

Worker

clicks 100120

Distributed

ads_102009

Reference

Worker

clicks_ 100220

Distributed

ads_102009

Reference

Lessons learned in 10 years of Citus development

Relational database workloads are highly latency-sensitive due to the need to
evaluate relationships, interactive protocols, ORMs

— Pack related data together using co-location, reference tables, local tables, ...

At scale, efficiency is too important to trade efficiency for scale
— Lean on existing RDBMS functionality to inherit price-performance characteristics

Distributed PostgreSQL only makes sense for specific workload patterns
— Target multi-tenant (SaaS), real-time analytics (loT, time series), CRUD, or hybrid.

Lessons learned in 10 years of Citus development

Scalability is not (just) about transaction throughput
— Real workloads are complex. Infrequent O(N) operations often dominate at scale.

PostgreSQL development never stops
— Contribute to PostgreSQL, build extensions, do not fork

Developing a complex mission-critical distributed database in which all features
are related is hard

— Do small, independently useful projects with long-term goals in mind

Thank you!

We will at some point be hiring again ©
(in Amsterdam, Istanbul, Redmond, San Francisco, or remote)

marco.slot@microsoft.com

Cosmos DB for PostgreSQL: https://aka.ms/AzureCosmosDBPGblog
Citus on GitHub: https://github.com/citusdata/citus

mailto:marco.slot@microsoft.com
https://aka.ms/AzureCosmosDBPGblog
https://github.com/citusdata/citus

	Slide 1: Azure Cosmos DB for PostgreSQL Distributed SQL service built on open-source Postgres & Citus
	Slide 2: Azure Cosmos DB for PostgreSQL
	Slide 3: Citus: Distributed PostgreSQL as an Extension
	Slide 4: Citus Features & Gaps
	Slide 5
	Slide 7
	Slide 8: Lessons learned in 10 years of Citus development
	Slide 9: Lessons learned in 10 years of Citus development
	Slide 10: Thank you!

