SAP SE

HEX |I|I|: SAP’s new HANA
Execution Engine

Daniel Ritter
Cloud Database Architect & Member of HANA Research Campus at SAP SE

Wponsor talk, Conference on Innovative Data Systems Research (CIDR), 1/2023
®

wo9o-des

desg

SAP SE

HANA Core Engmes and

Stores

Modular,
disconnected

Processing

Storage

SQL

/ SQL Script

A

SQL Optimizer

Join |g OLAP g Row |&
Engine|9 Enginel9 Engine|d
Column Table Row Table

Farber, Franz, et al. "The SAP HANA Database - An Architecture Overview." IEEE Data Eng. Bull. 35.1 (2012): 28-33.
Sherkat, Reza, et al. “Native Store Extension for SAP HANA" Proceedings of the VLDB Endowment 12.12 (2019): 2047-2058.
» Translytical Data Platforms, Forrester, Q4/2022: https://news.sap.com/2022/12/translytical-data-platforms-forrester-wave-sap-a-leader/

wo9o-des

In-memory + disk (cf.
NSE), HTAP (cf.
Translytical Data Platform)

desg

.. and many more: e.g. Calculation
engine (calculation views, star joins), MDS
engine (multi-dimensional queries incl.
aggregation, transformation, calculation),

SAP SE

[1{1| HEX

Modular, new physical operators
out of previous engines

Processing

Storage

SQL / SQL Script

A

SQL Optimizer

opt

opt-r

A

T~

Central, cross-optimizations

Composed into pipelines

Column Table

Row Table

wo9o-des

desg

SAP SE
O = - HEX State-of-the-art engine for HTAP (see table)
ve Nlew - Workloads: transactional applications (e.g., S4/HANA),
analytical queries (e.g., Data Warehouse Cloud)
- Data chunks
- JIT-L pipelined
Engine ree, DaatY ey Workload > Data-centric code generation in L (LLVM convenience
DuckDB Vectorized Pull Intra OLAP layer)
\fu\l’;‘ﬁgr) (ateetine) > L used also for, e.g., stored procedures
HyPer SIT-LLVM / Push ntra HTAP > Supportablllt.y': debugging, profiling L programs on tooling
Umbra Pipelined (pipeline), level; portability
_ . Inter? - Extensible: New physical operators can be added to
N R e e OLAP HEX (e.g., application- / service-specific)
Redshift ..JIT-9++/ Push Intra HTAP - TCO, Price / Performance
Slpelined > (pipeline) = Red.uce memory'footprint:. pipelining and §tr§aming, fewer
T T s - e engines (redu.cg intermediate result .ma.terlallzatlon)
HEX Pipelined (pipeline) - More CPU-efficient due to JIT compilation

- Performance same or slightly better
-> Distributed query processing (send, receive)
- Intra pipeline parallelization (dynamic)

Code generation based on Neumann, Thomas. "Efficiently compiling efficient query plans for modern hardware." Proceedings of the VLDB Endowment 4.9 (2011): 539-550.

Leis, Viktor, et al. "Morsel-driven parallelism: A NUMA-aware query evaluation framework for the many-core age." Proceedings of the 2014 ACM SIGMOD international
conference on Management of data. 2014.

® Raasveldt, Mark, and Mihleisen, Hannes. "DuckDB: an embeddable analytical database." Proceedings of the 2019 International Conference on Management of Data. 2019.

wo9o-des

desg

SAP SE

[I{1| Execution Phases

Start compilation

-> In practice

wo9o-des

- Works well / no issues for OLTP queries with plan

caching

- JIT compilation times challenging for large and

desg

complex analytical queries during cold start
- Mitigate JIT compilation times
- Start interpreted / uncompiled, compile in
background per query / L program (fragment)
- Switch to compilation after third execution

early
1. Preparation : 2. Execution
5 | Query
£ Optimizer : Result
Less aggressive o : Runtime 4
initial JITting ’\ l an I Parameters
Code Cache I 7 ;
Expressions, Generation 3 : , Execution
Predicates, ... 1 W | Framework
Executable plan R Executable | R Executable t
generation | Plan / Pipeline | T| Plan / Pipeline | L-Infra-
I structure

Store-specific (Table/IndexScan, ...),ICustom L/ C++, ...

Pipeline, Data

Start interpreted
Chunks, ...

and switch during
execution

Compiler, Runtime, ...

Framework
Generated Code

i

Fusion of operators —_|

Expression \

for Row in InputChunk
{
vidA
vidB

row.column[@]
row.column[1]

valueA
valueB

dictA[vidA]
dictB[vidB]

expr = valueA + valueB * 7

¢ — — =

outRow = ..

wo9o-des

desg

SAP SE

I I I I I I ntra Pi pel i ne - Pipelining: better memory access pattern (less cache misses)

and no full materialization between operators (lower memory

- - footprint)
Pa ra I I e I Izat I o n - Parallelization with pipelining more complicated

- Parallelize operators instead of data - determining task size

Decides on 7 .
parall eIizationl HEX Execution Framework | complicated: fixed task size = skewed workload
Add task - Parallelization requires (expensive) scheduling - bigger tasks sizes
1 has Schedule - - preferrable, BUT due to skewed workloads > fine-grained tasks
definition task | Create Worker
! v | I Manager
| 'Task Scheduler —— >
I I Create -
! : Worker |2
| I calc. #workers =
e T » OSSR | Jobs >
! Worker Manager (Job) ; "1
_____________ e e LT D
o)
| get next k Call =
JOIECREETS] (. A
Queue Manalger '\ WorkerJob i« TS5 mm e
observes, [: returns Thread, processing tasks L
maintains | ha]ndle from Work Queue
A A 4
Execution Flags
Work Queue | (Pause, Resume,
stored task definitions, Finish)

task priorities

wo9o-des

desg

SAP SE

I I I I I I ntra Pi pel i ne - Pipelining: better memory access pattern (less cache misses)

and no full materialization between operators (lower memory

- - footprint)
Pa ra I I e I Izat I o n - Parallelization with pipelining more complicated

- Parallelize operators instead of data - determining task size
| HEX Execution Framework | complicated: fixed task size > skewed workload

Decides on
parallelization

Add task - Parallelization requires (expensive) scheduling - bigger tasks sizes
- Schedule _ - preferrable, BUT due to skewed workloads > fine-grained tasks
definition task I Create Worker . . .
| v ' Manager - Reduce / tame job creation overhead / scheduling:
| ‘Task Scheduler }] > - HEX task scheduling integrated in HANA job scheduling
| : Create 5 - Map several tasks (possibly of different kind) to one job (pooled)
- _“—:— __________________ 1 calc. #workers V\szt:r § - Job will live longer than task = less job creation overhead
Worker Manager (Job) ; > 8
_____________ PSS S S S
o)
: get next k Call o
priotask - T T T0
Queue Manalger N .J:___V_V_er(_e_r_‘]_qb_“—:4_‘:::::_-:_._
observes, [: returns Thread, processing tasks [
maintains | ha]ndle from Work Queue
A A 4
Execution Flags
Work Queue | (Pause, Resume,
stored task definitions, Finish)

task priorities

wo9o-des

desg

SAP SE

||||| Intra Pipeline
Parallelization

Decides on

| HEX Execution Framework |

parallelization

Job Executor

Add task Schedule
definition task : Create Worker
! v | I Manager
| 'Task Scheduler —— >
I : Create
|
T T 3 _calo. #workers "\ O!
Worker Manager (Job) ; >
_____________ b it P
| get next k Call
priotask - T T T0
Queue Manalger N .J:_ ~ Worker Job —:4_‘::::: FRp——
observes, I returns Thread, processing tasks
maintains : handle from Work Queue
4 v |
Work Queue | Execution Flags

stored task definitions,
task priorities

(

Pause, Resume,
Finish)

- Pipelining: better memory access pattern (less cache misses)

and no full materialization between operators (lower memory
footprint)

- Parallelization with pipelining more complicated

- Parallelize operators instead of data - determining task size
complicated: fixed task size > skewed workload

- Parallelization requires (expensive) scheduling - bigger tasks sizes
preferrable, BUT due to skewed workloads - fine-grained tasks

- Reduce / tame job creation overhead / scheduling:

- HEX task scheduling integrated in HANA job scheduling
- Map several tasks (possibly of different kind) to one job (pooled)
- Job will live longer than task = less job creation overhead

- Address workload skew: sampling / re-parallelization

- Worker Manager checks the Queue Manager regularly to calculate
progress and creates more workers, if needed > #workers dynamic

- Sampling phase decides if parallelization is needed + size of tasks

- Intermediate scheduling operators measure elapsed time to execute
remaining pipeline (e.g., after selective / expanding joins, selective
table scans) + find new, good task size

- Sampling not for free due to scheduling points

- Are sync. points > too many lead to fluctuations between runs
- Break operator fusion

wo9o-des

desg

SAP SE

IIIII Challenges and
Opportunities

Remove old engines “in-flight”
without disruptions: no
functional or performance
regressions

State-of-the-art, compiled, Multi-Model engines in
pipelined query engine with HEX, nested file formats,
extensible architecture

W Multimodel Data Platforms, Forrester, Q3 2021: https://www.sap.com/cmp/dg/forresterwave-mmdp/index.html
®

wo9o-des

desg

SAP SE

Join us later at CIDR:

+ Tuesday 4:50 pm: Data Pipes: Declarative Control over Data Movement Lukas Vogel
(Technische Universitat Midnchen); Daniel Ritter (SAP); Danica Porobic (Oracle); Pinar Tozun
(IT University of Copenhagen)*; Tianzheng Wang (Simon Fraser University); Alberto Lerner
(University of Fribourg)

« Wednesday 11:10 am: DASH: Asynchronous Hardware Data Processing Services Norman
May (SAP SE)*; Daniel Ritter (SAP); Andre Dossinger (SAP SE); Christian Faerber (Intel
Corporation); Suleyman Demirsoy (Intel Corporation)

Ph.D. position

available!

wo9o-des

desg

Special thanks go to our academic and industrial
collaboration partners as part of the SAP HANA
Research Campus!

SAP SE

Thank you!

Contact information: I I I I |

Daniel Ritter
E-Mail: daniel.ritter@sap.com
HEX-Blog: https://blogs.sap.com/2023/01/05/faster-query-execution-using-lesser-memory-in-sap-hana-cloud/

SADd

wo9o-des

desg

