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HEX      : SAP’s new HANA 
Execution Engine

Daniel Ritter
Cloud Database Architect & Member of HANA Research Campus at SAP SE

Sponsor talk, Conference on Innovative Data Systems Research (CIDR), 1/2023
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SQL Optimizer

HANA Core Engines and 
Stores

SQL / SQL Script

Join 
Engine

…
Row 

Engine
OLAP 
Engine

Column TableStorage

Processing

Modular, 
disconnected

• Färber, Franz, et al. "The SAP HANA Database - An Architecture Overview." IEEE Data Eng. Bull. 35.1 (2012): 28-33.
• Sherkat, Reza, et al. “Native Store Extension for SAP HANA" Proceedings of the VLDB Endowment 12.12 (2019): 2047-2058.
• Translytical Data Platforms, Forrester, Q4/2022: https://news.sap.com/2022/12/translytical-data-platforms-forrester-wave-sap-a-leader/

Row Table

op
t

op
t

op
t-

r

HANA

In-memory + disk (cf. 
NSE), HTAP (cf. 
Translytical Data Platform)

… and many more: e.g. Calculation 
engine (calculation views, star joins), MDS 
engine (multi-dimensional queries incl. 
aggregation, transformation, calculation), 
…
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HEX

SQL / SQL Script

Join 
Engine 

Operators
…

Row 
Engine 

Operators

OLAP 
Engine 

Operators

Column TableStorage

Processing Composed into pipelines

7

Row Table

HEX
Modular, new physical operators 
out of previous engines

SQL Optimizer

op
t-

r

op
t

op
t

Central, cross-optimizations
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Overview  HEX State-of-the-art engine for HTAP (see table)
 Workloads: transactional applications (e.g., S4/HANA), 

analytical queries (e.g., Data Warehouse Cloud)
 Data chunks
 JIT-L pipelined

 Data-centric code generation in L (LLVM convenience 
layer)
 L used also for, e.g., stored procedures
 Supportability: debugging, profiling L programs on tooling 

level; portability

 Extensible: New physical operators can be added to 
HEX (e.g., application- / service-specific)

 TCO, Price / Performance
 Reduce memory footprint: pipelining and streaming, fewer 

engines (reduce intermediate result materialization)
 More CPU-efficient due to JIT compilation
 Performance same or slightly better

 Distributed query processing (send, receive)
 Intra pipeline parallelization (dynamic)

Engine Proc. 
Model

Data flow 
model

Level of 
Parallelism

Workload

DuckDB Vectorized Pull 
(“Vector 

Vulcano”)

Intra 
(pipeline)

OLAP

HyPer / 
Umbra

JIT-LLVM / 
Pipelined

Push Intra 
(pipeline), 

Inter?

HTAP

Hyrise Materialized 
(lazy)

Push Intra 
(pipeline)

OLAP

Redshift JIT-C++ / 
Pipelined + 
Vectorized?

Push Intra 
(pipeline)

HTAP

HANA / 
HEX

JIT-L / 
Pipelined

Push Intra 
(pipeline)

HTAP

• Code generation based on Neumann, Thomas. "Efficiently compiling efficient query plans for modern hardware." Proceedings of the VLDB Endowment 4.9 (2011): 539-550.

• Leis, Viktor, et al. "Morsel-driven parallelism: A NUMA-aware query evaluation framework for the many-core age." Proceedings of the 2014 ACM SIGMOD international 
conference on Management of data. 2014.

• Raasveldt, Mark, and Mühleisen, Hannes. "DuckDB: an embeddable analytical database." Proceedings of the 2019 International Conference on Management of Data. 2019.
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Execution Phases  In practice
Works well / no issues for OLTP queries with plan 

caching
 JIT compilation times challenging for large and 

complex analytical queries during cold start
 Mitigate JIT compilation times
 Start interpreted / uncompiled, compile in 

background per query / L program (fragment)
 Switch to compilation after third execution

P
ar

se
r

Optimizer

Executable plan 
generation

Execution 
Framework

Executable 
Plan / Pipeline

Plan 
Cache

Executable 
Plan / Pipeline

Runtime 
Parameters

Query 
Result

1. Preparation 2. Execution

Code 
Generation

L-Infra-
structure

Expressions, 
Predicates, …

Store-specific (Table/IndexScan, …), Custom L / C++, …

Compiler, Runtime, …

Pipeline, Data 
Chunks, …

Start compilation 
early

Less aggressive 
initial JITting

Start interpreted 
and switch during 
execution
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Project
“A + B * 7”

Example
SELECT A, A + B * 7 from X;

Table 
Scan

Read VIDs 
for A, B

Read values 
from dictionaries

Send 
result

Precompiled 
Operator

Generated Operator Data Chunk

Table 
Scan

Read VIDs 
for A, B

DocId
1
2
3

VID A
5
8
2

VID B
1
3
8

Generated Operator

for Row in InputChunk
{

vidA = row.column[0]
vidB = row.column[1]

valueA = dictA[vidA]
valueB = dictB[vidB]

expr = valueA + valueB * 7

outRow = …
}

A
100
200
300

Expr
100
207
349

Send 
result

Framework 
Generated Code

Expression

Fusion of operators
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Intra Pipeline 
Parallelization

 Pipelining: better memory access pattern (less cache misses) 
and no full materialization between operators (lower memory 
footprint)

 Parallelization with pipelining more complicated
 Parallelize operators instead of data  determining task size 

complicated: fixed task size  skewed workload
 Parallelization requires (expensive) scheduling  bigger tasks sizes 

preferrable, BUT due to skewed workloads  fine-grained tasks

HEX Execution Framework

Task Scheduler

Work Queue Execution Flags 
(Pause, Resume, 

Finish)

Jo
b 

E
xe

cu
to

r

observes, 
maintains

stored task definitions, 
task priorities

Thread, processing tasks 
from Work Queue

Create 
Worker 

Jobs

Create Worker 
Manager

Call

Decides on 
parallelization

Add task 
definition

returns 
handle

Schedule 
task

calc. #workers

get next 
prio task

Worker Job

Worker Manager (Job)

Queue Manager
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Intra Pipeline 
Parallelization

 Pipelining: better memory access pattern (less cache misses) 
and no full materialization between operators (lower memory 
footprint)

 Parallelization with pipelining more complicated
 Parallelize operators instead of data  determining task size 

complicated: fixed task size  skewed workload
 Parallelization requires (expensive) scheduling  bigger tasks sizes 

preferrable, BUT due to skewed workloads  fine-grained tasks

 Reduce / tame job creation overhead / scheduling:
 HEX task scheduling integrated in HANA job scheduling
 Map several tasks (possibly of different kind) to one job (pooled)
 Job will live longer than task  less job creation overhead

HEX Execution Framework

Task Scheduler

Work Queue Execution Flags 
(Pause, Resume, 

Finish)

Jo
b 

E
xe

cu
to

r

observes, 
maintains

stored task definitions, 
task priorities

Thread, processing tasks 
from Work Queue

Create 
Worker 

Jobs

Create Worker 
Manager

Call

Decides on 
parallelization

Add task 
definition

returns 
handle

Schedule 
task

calc. #workers

get next 
prio task

Worker Job

Worker Manager (Job)

Queue Manager
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Intra Pipeline 
Parallelization

 Pipelining: better memory access pattern (less cache misses) 
and no full materialization between operators (lower memory 
footprint)

 Parallelization with pipelining more complicated
 Parallelize operators instead of data  determining task size 

complicated: fixed task size  skewed workload
 Parallelization requires (expensive) scheduling  bigger tasks sizes 

preferrable, BUT due to skewed workloads  fine-grained tasks

 Reduce / tame job creation overhead / scheduling:
 HEX task scheduling integrated in HANA job scheduling
 Map several tasks (possibly of different kind) to one job (pooled)
 Job will live longer than task  less job creation overhead

 Address workload skew: sampling / re-parallelization
 Worker Manager checks the Queue Manager regularly to calculate 

progress and creates more workers, if needed > #workers dynamic
 Sampling phase decides if parallelization is needed + size of tasks
 Intermediate scheduling operators measure elapsed time to execute 

remaining pipeline (e.g., after selective / expanding joins, selective 
table scans) + find new, good task size

 Sampling not for free due to scheduling points
 Are sync. points > too many lead to fluctuations between runs
 Break operator fusion

HEX Execution Framework

Task Scheduler

Work Queue Execution Flags 
(Pause, Resume, 

Finish)

Jo
b 

E
xe

cu
to

r

observes, 
maintains

stored task definitions, 
task priorities

Thread, processing tasks 
from Work Queue

Create 
Worker 

Jobs

Create Worker 
Manager

Call

Decides on 
parallelization

Add task 
definition

returns 
handle

Schedule 
task

calc. #workers

get next 
prio task

Worker Job

Worker Manager (Job)

Queue Manager
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Challenges and 
Opportunities

9

Multi-Model engines in 
HEX, nested file formats, 

…

…

Remove old engines “in-flight” 
without disruptions: no 

functional or performance 
regressions

State-of-the-art, compiled, 
pipelined query engine with 

extensible architecture

Multimodel Data Platforms, Forrester, Q3 2021: https://www.sap.com/cmp/dg/forresterwave-mmdp/index.html
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Join us later at CIDR:
• Tuesday 4:50 pm: Data Pipes: Declarative Control over Data Movement Lukas Vogel 

(Technische Universität München); Daniel Ritter (SAP); Danica Porobic (Oracle); Pinar Tozun
(IT University of Copenhagen)*; Tianzheng Wang (Simon Fraser University); Alberto Lerner 
(University of Fribourg)

• Wednesday 11:10 am: DASH: Asynchronous Hardware Data Processing Services Norman 
May (SAP SE)*; Daniel Ritter (SAP); Andre Dossinger (SAP SE); Christian Faerber (Intel 
Corporation); Suleyman Demirsoy (Intel Corporation)

Special thanks go to our academic and industrial 
collaboration partners as part of the SAP HANA 

Research Campus!

Ph.D. position 
available!
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Thank you!

Contact information:

Daniel Ritter
E-Mail: daniel.ritter@sap.com
HEX-Blog: https://blogs.sap.com/2023/01/05/faster-query-execution-using-lesser-memory-in-sap-hana-cloud/


