
sap
.co

m
#s

ap

SAP SE

HEX : SAP’s new HANA
Execution Engine

Daniel Ritter
Cloud Database Architect & Member of HANA Research Campus at SAP SE

Sponsor talk, Conference on Innovative Data Systems Research (CIDR), 1/2023

sap
.co

m
#s

ap

SAP SE

SQL Optimizer

HANA Core Engines and
Stores

SQL / SQL Script

Join
Engine

…
Row

Engine
OLAP
Engine

Column TableStorage

Processing

Modular,
disconnected

• Färber, Franz, et al. "The SAP HANA Database - An Architecture Overview." IEEE Data Eng. Bull. 35.1 (2012): 28-33.
• Sherkat, Reza, et al. “Native Store Extension for SAP HANA" Proceedings of the VLDB Endowment 12.12 (2019): 2047-2058.
• Translytical Data Platforms, Forrester, Q4/2022: https://news.sap.com/2022/12/translytical-data-platforms-forrester-wave-sap-a-leader/

Row Table

op
t

op
t

op
t-

r

HANA

In-memory + disk (cf.
NSE), HTAP (cf.
Translytical Data Platform)

… and many more: e.g. Calculation
engine (calculation views, star joins), MDS
engine (multi-dimensional queries incl.
aggregation, transformation, calculation),
…

sap
.co

m
#s

ap

SAP SE

HEX

SQL / SQL Script

Join
Engine

Operators
…

Row
Engine

Operators

OLAP
Engine

Operators

Column TableStorage

Processing Composed into pipelines

7

Row Table

HEX
Modular, new physical operators
out of previous engines

SQL Optimizer

op
t-

r

op
t

op
t

Central, cross-optimizations

sap
.co

m
#s

ap

SAP SE

Overview  HEX State-of-the-art engine for HTAP (see table)
 Workloads: transactional applications (e.g., S4/HANA),

analytical queries (e.g., Data Warehouse Cloud)
 Data chunks
 JIT-L pipelined

 Data-centric code generation in L (LLVM convenience
layer)
 L used also for, e.g., stored procedures
 Supportability: debugging, profiling L programs on tooling

level; portability

 Extensible: New physical operators can be added to
HEX (e.g., application- / service-specific)

 TCO, Price / Performance
 Reduce memory footprint: pipelining and streaming, fewer

engines (reduce intermediate result materialization)
 More CPU-efficient due to JIT compilation
 Performance same or slightly better

 Distributed query processing (send, receive)
 Intra pipeline parallelization (dynamic)

Engine Proc.
Model

Data flow
model

Level of
Parallelism

Workload

DuckDB Vectorized Pull
(“Vector

Vulcano”)

Intra
(pipeline)

OLAP

HyPer /
Umbra

JIT-LLVM /
Pipelined

Push Intra
(pipeline),

Inter?

HTAP

Hyrise Materialized
(lazy)

Push Intra
(pipeline)

OLAP

Redshift JIT-C++ /
Pipelined +
Vectorized?

Push Intra
(pipeline)

HTAP

HANA /
HEX

JIT-L /
Pipelined

Push Intra
(pipeline)

HTAP

• Code generation based on Neumann, Thomas. "Efficiently compiling efficient query plans for modern hardware." Proceedings of the VLDB Endowment 4.9 (2011): 539-550.

• Leis, Viktor, et al. "Morsel-driven parallelism: A NUMA-aware query evaluation framework for the many-core age." Proceedings of the 2014 ACM SIGMOD international
conference on Management of data. 2014.

• Raasveldt, Mark, and Mühleisen, Hannes. "DuckDB: an embeddable analytical database." Proceedings of the 2019 International Conference on Management of Data. 2019.

sap
.co

m
#s

ap

SAP SE

Execution Phases  In practice
Works well / no issues for OLTP queries with plan

caching
 JIT compilation times challenging for large and

complex analytical queries during cold start
 Mitigate JIT compilation times
 Start interpreted / uncompiled, compile in

background per query / L program (fragment)
 Switch to compilation after third execution

P
ar

se
r

Optimizer

Executable plan
generation

Execution
Framework

Executable
Plan / Pipeline

Plan
Cache

Executable
Plan / Pipeline

Runtime
Parameters

Query
Result

1. Preparation 2. Execution

Code
Generation

L-Infra-
structure

Expressions,
Predicates, …

Store-specific (Table/IndexScan, …), Custom L / C++, …

Compiler, Runtime, …

Pipeline, Data
Chunks, …

Start compilation
early

Less aggressive
initial JITting

Start interpreted
and switch during
execution

sap
.co

m
#s

ap

SAP SE

Project
“A + B * 7”

Example
SELECT A, A + B * 7 from X;

Table
Scan

Read VIDs
for A, B

Read values
from dictionaries

Send
result

Precompiled
Operator

Generated Operator Data Chunk

Table
Scan

Read VIDs
for A, B

DocId
1
2
3

VID A
5
8
2

VID B
1
3
8

Generated Operator

for Row in InputChunk
{

vidA = row.column[0]
vidB = row.column[1]

valueA = dictA[vidA]
valueB = dictB[vidB]

expr = valueA + valueB * 7

outRow = …
}

A
100
200
300

Expr
100
207
349

Send
result

Framework
Generated Code

Expression

Fusion of operators

sap
.co

m
#s

ap

SAP SE

Intra Pipeline
Parallelization

 Pipelining: better memory access pattern (less cache misses)
and no full materialization between operators (lower memory
footprint)

 Parallelization with pipelining more complicated
 Parallelize operators instead of data  determining task size

complicated: fixed task size  skewed workload
 Parallelization requires (expensive) scheduling  bigger tasks sizes

preferrable, BUT due to skewed workloads  fine-grained tasks

HEX Execution Framework

Task Scheduler

Work Queue Execution Flags
(Pause, Resume,

Finish)

Jo
b

E
xe

cu
to

r

observes,
maintains

stored task definitions,
task priorities

Thread, processing tasks
from Work Queue

Create
Worker

Jobs

Create Worker
Manager

Call

Decides on
parallelization

Add task
definition

returns
handle

Schedule
task

calc. #workers

get next
prio task

Worker Job

Worker Manager (Job)

Queue Manager

sap
.co

m
#s

ap

SAP SE

Intra Pipeline
Parallelization

 Pipelining: better memory access pattern (less cache misses)
and no full materialization between operators (lower memory
footprint)

 Parallelization with pipelining more complicated
 Parallelize operators instead of data  determining task size

complicated: fixed task size  skewed workload
 Parallelization requires (expensive) scheduling  bigger tasks sizes

preferrable, BUT due to skewed workloads  fine-grained tasks

 Reduce / tame job creation overhead / scheduling:
 HEX task scheduling integrated in HANA job scheduling
 Map several tasks (possibly of different kind) to one job (pooled)
 Job will live longer than task  less job creation overhead

HEX Execution Framework

Task Scheduler

Work Queue Execution Flags
(Pause, Resume,

Finish)

Jo
b

E
xe

cu
to

r

observes,
maintains

stored task definitions,
task priorities

Thread, processing tasks
from Work Queue

Create
Worker

Jobs

Create Worker
Manager

Call

Decides on
parallelization

Add task
definition

returns
handle

Schedule
task

calc. #workers

get next
prio task

Worker Job

Worker Manager (Job)

Queue Manager

sap
.co

m
#s

ap

SAP SE

Intra Pipeline
Parallelization

 Pipelining: better memory access pattern (less cache misses)
and no full materialization between operators (lower memory
footprint)

 Parallelization with pipelining more complicated
 Parallelize operators instead of data  determining task size

complicated: fixed task size  skewed workload
 Parallelization requires (expensive) scheduling  bigger tasks sizes

preferrable, BUT due to skewed workloads  fine-grained tasks

 Reduce / tame job creation overhead / scheduling:
 HEX task scheduling integrated in HANA job scheduling
 Map several tasks (possibly of different kind) to one job (pooled)
 Job will live longer than task  less job creation overhead

 Address workload skew: sampling / re-parallelization
 Worker Manager checks the Queue Manager regularly to calculate

progress and creates more workers, if needed > #workers dynamic
 Sampling phase decides if parallelization is needed + size of tasks
 Intermediate scheduling operators measure elapsed time to execute

remaining pipeline (e.g., after selective / expanding joins, selective
table scans) + find new, good task size

 Sampling not for free due to scheduling points
 Are sync. points > too many lead to fluctuations between runs
 Break operator fusion

HEX Execution Framework

Task Scheduler

Work Queue Execution Flags
(Pause, Resume,

Finish)

Jo
b

E
xe

cu
to

r

observes,
maintains

stored task definitions,
task priorities

Thread, processing tasks
from Work Queue

Create
Worker

Jobs

Create Worker
Manager

Call

Decides on
parallelization

Add task
definition

returns
handle

Schedule
task

calc. #workers

get next
prio task

Worker Job

Worker Manager (Job)

Queue Manager

sap
.co

m
#s

ap

SAP SE

Challenges and
Opportunities

9

Multi-Model engines in
HEX, nested file formats,

…

…

Remove old engines “in-flight”
without disruptions: no

functional or performance
regressions

State-of-the-art, compiled,
pipelined query engine with

extensible architecture

Multimodel Data Platforms, Forrester, Q3 2021: https://www.sap.com/cmp/dg/forresterwave-mmdp/index.html

sap
.co

m
#s

ap

SAP SE

Join us later at CIDR:
• Tuesday 4:50 pm: Data Pipes: Declarative Control over Data Movement Lukas Vogel

(Technische Universität München); Daniel Ritter (SAP); Danica Porobic (Oracle); Pinar Tozun
(IT University of Copenhagen)*; Tianzheng Wang (Simon Fraser University); Alberto Lerner
(University of Fribourg)

• Wednesday 11:10 am: DASH: Asynchronous Hardware Data Processing Services Norman
May (SAP SE)*; Daniel Ritter (SAP); Andre Dossinger (SAP SE); Christian Faerber (Intel
Corporation); Suleyman Demirsoy (Intel Corporation)

Special thanks go to our academic and industrial
collaboration partners as part of the SAP HANA

Research Campus!

Ph.D. position
available!

sap
.co

m
#s

ap

SAP SE

Thank you!

Contact information:

Daniel Ritter
E-Mail: daniel.ritter@sap.com
HEX-Blog: https://blogs.sap.com/2023/01/05/faster-query-execution-using-lesser-memory-in-sap-hana-cloud/

