skip to main content
research-article

Noise-robust semi-supervised learning via fast sparse coding

Published: 01 February 2015 Publication History

Abstract

This paper presents a novel noise-robust graph-based semi-supervised learning algorithm to deal with the challenging problem of semi-supervised learning with noisy initial labels. Inspired by the successful use of sparse coding for noise reduction, we choose to give new L1-norm formulation of Laplacian regularization for graph-based semi-supervised learning. Since our L1-norm Laplacian regularization is explicitly defined over the eigenvectors of the normalized Laplacian matrix, we formulate graph-based semi-supervised learning as an L1-norm linear reconstruction problem which can be efficiently solved by sparse coding. Furthermore, by working with only a small subset of eigenvectors, we develop a fast sparse coding algorithm for our L1-norm semi-supervised learning. Finally, we evaluate the proposed algorithm in noise-robust image classification. The experimental results on several benchmark datasets demonstrate the promising performance of the proposed algorithm. HighlightsWe propose novel semi-supervised learning based on fast sparse coding.Our algorithm achieves promising results in noise-robust image classification.Our algorithm can readily be extended to many other challenging problems.

References

[1]
K. Lu, J. Zhao, D. Cai, An algorithm for semi-supervised learning in image retrieval, Pattern Recognit., 39 (2006) 717-720.
[2]
D. Xu, S. Yan, Semi-supervised bilinear subspace learning, IEEE Trans. Image Process., 18 (2009) 1671-1676.
[3]
Z. Lu, H. Ip, Combining context, consistency, and diversity cues for interactive image categorization, IEEE Trans. Multimed., 12 (2010) 194-203.
[4]
R. Fergus, Y. Weiss, A. Torralba, Semi-supervised learning in gigantic image collections, in: Advances in Neural Information Processing Systems, vol. 22, 2010, pp. 522-530.
[5]
J. Tang, S. Yan, R. Hong, G.-J. Qi, T.-S. Chua, Inferring semantic concepts from community-contributed images and noisy tags, in: Proceedings of ACM Multimedia, 2009, pp. 223-232.
[6]
J. Liu, M. Li, Q. Liu, H. Lu, S. Ma, Image annotation via graph learning, Pattern Recognit., 42 (2009) 218-228.
[7]
A. Blum, T. Mitchell, Combining labeled and unlabeled data with co-training, in: Proceedings of COLT, 1998.
[8]
X. Zhu, Z. Ghahramani, J. Lafferty, Semi-supervised learning using Gaussian fields and harmonic functions, in: Proceedings of ICML, 2003, pp. 912-919.
[9]
D. Zhou, O. Bousquet, T. Lal, J. Weston, B. Sch�lkopf, Learning with local and global consistency, in: Advances in Neural Information Processing Systems, vol. 16, 2004, pp. 321-328.
[10]
M. Belkin, P. Niyogi, V. Sindhwani, Manifold regularization, J. Mach. Learn. Res., 7 (2006) 2399-2434.
[11]
F. Wang, C. Zhang, Label propagation through linear neighborhoods, IEEE Trans. Knowl. Data Eng., 20 (2008) 55-67.
[12]
S. Yan, H. Wang, Semi-supervised learning by sparse representation, in: Proceedings of SDM, 2009, pp. 792-801.
[13]
B. Cheng, J. Yang, S. Yan, Y. Fu, T. Huang, Learning with �1-graph for image analysis, IEEE Trans. Image Process., 19 (2010) 858-866.
[14]
W. Liu, J. He, S.-F. Chang, Large graph construction for scalable semi-supervised learning, in: Proceedings of ICML, 2010, pp. 679-686.
[15]
B.-K. Bao, B. Ni, Y. Mu, S. Yan, Efficient region-aware large graph construction towards scalable multi-label propagation, Pattern Recognit., 44 (2011) 598-606.
[16]
L. Zhuang, H. Gao, Z. Lin, Y. Ma, X. Zhang, N. Yu, Non-negative low rank and sparse graph for semi-supervised learning, in: Proceedings of CVPR, 2012, pp. 2328-2335.
[17]
S. Sun, Z. Hussain, J. Shawe-Taylor, Manifold-preserving graph reduction for sparse semi-supervised learning, Neurocomputing, 124 (2014) 13-21.
[18]
R. Ando, T. Zhang, Learning on graph with Laplacian regularization, in: Advances in Neural Information Processing Systems, vol. 19, 2007, pp. 25-32.
[19]
Z. Lu, Y. Peng, Exhaustive and efficient constraint propagation, Int. J. Comput. Vis., 103 (2013) 306-325.
[20]
M. Elad, M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries, IEEE Trans. Image Process., 15 (2006) 3736-3745.
[21]
J. Mairal, M. Elad, G. Sapiro, Sparse representation for color image restoration, IEEE Trans. Image Process., 17 (2008) 53-69.
[22]
J. Wright, A. Yang, A. Ganesh, S. Sastry, Y. Ma, Robust face recognition via sparse representation, IEEE Trans. Pattern Anal. Mach. Intell., 31 (2009) 210-227.
[23]
Y. Xiao, T. Zeng, J. Yu, M.K. Ng, Restoration of images corrupted by mixed gaussian-impulse noise via l1-l0 minimization, Pattern Recognit., 44 (2011) 1708-1720.
[24]
A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2 (2009) 183-202.
[25]
D. Donoho, For most large underdetermined systems of linear equations the minimal �1-norm solution is also the sparsest solution, Commun. Pure Appl. Math., 59 (2004) 797-829.
[26]
M. Osborne, B. Presnell, B. Turlach, A new approach to variable selection in least squares problems, IMA J. Numer. Anal., 20 (2000) 389-403.
[27]
M. Figueiredo, R. Nowak, S. Wright, Gradient projection for sparse reconstruction, IEEE J. Sel. Top. Signal Process., 1 (2007) 586-597.
[28]
H. Lee, A. Battle, R. Raina, A. Ng, Efficient sparse coding algorithms, in: Advances in Neural Information Processing Systems, vol. 19, 2007, pp. 801-808.
[29]
R. Tibshirani, Regression shrinkage and selection via the Lasso, J. R. Stat. Soc. Ser. B, 58 (1996) 267-288.
[30]
M. Slawski, W. zu Castell, G. Tutz, Feature selection guided by structural information, Ann. Appl. Stat., 4 (2010) 1056-1080.
[31]
Z. Lu, Y. Peng, Heterogeneous constraint propagation with constrained sparse representation, in: Proceedings of ICDM, 2012, pp. 1002-1007.
[32]
S. Melacci, M. Belkin, Laplacian support vector machines trained in the primal, J. Mach. Learn. Res., 12 (2011) 1149-1184.
[33]
M. Karlen, J. Weston, A. Erkan, R. Collobert, Large scale manifold transduction, in: Proceedings of ICML, 2008, pp. 448-455.
[34]
S. Sun, J. Shawe-Taylor, Sparse semi-supervised learning using conjugate functions, J. Mach. Learn. Res., 11 (2010) 2423-2455.
[35]
G. Huang, S. Song, J.N. Gupta, C. Wu, A second order cone programming approach for semi-supervised learning, Pattern Recognit., 46 (2013) 3548-3558.
[36]
K.-H. Kim, S. Choi, Label propagation through minimax paths for scalable semi-supervised learning, Pattern Recognit. Lett., 45 (2014) 17-25.
[37]
T. Kobayashi, Kernel-based transition probability toward similarity measure for semi-supervised learning, Pattern Recognit., 47 (2014) 1994-2010.
[38]
K. Sinha, M. Belkin, Semi-supervised learning using sparse eigenfunction bases, in: Advances in Neural Information Processing Systems, vol. 22, 2010, pp. 1687-1695.
[39]
S. Gao, I. Tsang, L.-T. Chia, P. Zhao, Local features are not lonely-Laplacian sparse coding for image classification, in: Proceedings of CVPR, 2010, pp. 3555-3561.
[40]
X. Chen, Q. Lin, S. Kim, J.G. Carbonell, E.P. Xing, Smoothing proximal gradient method for general structured sparse learning, in: Proceedings of UAI, 2011, pp. 105-114.
[41]
S. Petry, C. Flexeder, G. Tutz, Pairwise fused Lasso, Technical Report 102, Department of Statistics, University of Munich, 2011.
[42]
D. Zhou, B. Scholk�pf, Regularization on discrete spaces, in: Proceedings of DAGM, 2005, pp. 361-368.
[43]
Y. Zhang, J.G. Schneider, A. Dubrawski, Learning compressible models, in: Proceedings of SDM, 2010, pp. 872-881.
[44]
Convex Optimization, in: Convex Optimization, Cambridge University Press, New York, 2004.
[45]
Semi-Supervised Learning, in: Semi-Supervised Learning, MIT Press, Cambridge, MA, 2006.
[46]
V. Sindhwani, D. Rosenberg, An RKHS for multi-view learning and manifold coregularization, in: Proceedings of ICML, 2008, pp. 976-983.
[47]
Z. Lu, H. Ip, Spatial Markov kernels for image categorization and annotation, IEEE Trans. Syst. Man Cybern. Part B, 41 (2011) 976-989.
[48]
O. Chapelle, A. Zien, Semi-supervised classification by low density separation, in: Proceedings of AISTATS, 2005, pp. 57-64.

Cited By

View all
  1. Noise-robust semi-supervised learning via fast sparse coding

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Pattern Recognition
    Pattern Recognition  Volume 48, Issue 2
    February 2015
    325 pages

    Publisher

    Elsevier Science Inc.

    United States

    Publication History

    Published: 01 February 2015

    Author Tags

    1. Graph-based semi-supervised learning
    2. Laplacian regularization
    3. Noise reduction
    4. Noise-robust image classification
    5. Sparse coding

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 16 Oct 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)A Survey on Deep Semi-Supervised LearningIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2022.322021935:9(8934-8954)Online publication date: 1-Sep-2023
    • (2019)Structure regularized self-paced learning for robust semi-supervised pattern classificationNeural Computing and Applications10.1007/s00521-018-3478-131:10(6559-6574)Online publication date: 1-Oct-2019
    • (2018)Dynamic sparse coding for sparse time-series modeling via first-order smooth optimizationApplied Intelligence10.5555/3288064.328809648:11(3889-3901)Online publication date: 1-Nov-2018
    • (2018)Random subspace based ensemble sparse representationPattern Recognition10.1016/j.patcog.2017.09.01674:C(544-555)Online publication date: 1-Feb-2018
    • (2017)Discriminative sparse flexible manifold embedding with novel graph for robust visual representation and label propagationPattern Recognition10.1016/j.patcog.2016.07.04261:C(492-510)Online publication date: 1-Jan-2017
    • (2017)Semi-supervised classification of multiple kernels embedding manifold informationCluster Computing10.1007/s10586-017-1123-x20:4(3417-3426)Online publication date: 1-Dec-2017
    • (2016)Towards designing risk-based safe Laplacian Regularized Least SquaresExpert Systems with Applications: An International Journal10.1016/j.eswa.2015.09.01745:C(1-7)Online publication date: 1-Mar-2016
    • (2016)Image denoising via sparse coding using eigenvectors of graph LaplacianDigital Signal Processing10.1016/j.dsp.2015.12.01350:C(114-122)Online publication date: 1-Mar-2016

    View Options

    View options

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media