skip to main content
10.1145/2261250.2261282acmconferencesArticle/Chapter ViewAbstractPublication PagessocgConference Proceedingsconference-collections
research-article

Multinerves and helly numbers of acyclic families

Published: 17 June 2012 Publication History

Abstract

The nerve of a family of sets is a simplicial complex that records the intersection pattern of its subfamilies. Nerves are widely used in computational geometry and topology, because the nerve theorem guarantees that the nerve of a family of geometric objects has the same topology as the union of the objects, if they form a good cover. In this paper, we relax the good cover assumption to the case where each subfamily intersects in a disjoint union of possibly several homology cells, and we prove a generalization of the nerve theorem in this framework, using spectral sequences from algebraic topology. We then deduce a new topological Helly-type theorem that unifies previous results of Amenta, Kalai and Meshulam, and Matousek. This Helly-type theorem is used to (re)prove, in a unified way, bounds on transversal Helly numbers in geometric transversal theory.

References

[1]
N. Alon and G. Kalai. Bounding the piercing number. Discrete & Computational Geometry, 13:245--256, 1995.
[2]
N. Amenta. Helly-type theorems and generalized linear programming. Discrete & Computational Geometry, 12:241--261, 1994.
[3]
N. Amenta. A new proof of an interesting Helly-type theorem. Discrete & Computational Geometry, 15:423--427, 1996.
[4]
D. Attali and H. Edelsbrunner. Inclusion-exclusion formulas from independent complexes. Discrete & Computational Geometry, 37:59--77, 2007.
[5]
D. Attali, A. Lieutier, and D. Salinas. Efficient data structure for representing and simplifying simplicial complexes in high dimensions. In Proceedings of the 27th Annual ACM Symposium on Computational Geometry, SoCG '11, pages 501--509, 2011.
[6]
D. Attali, A. Lieutier, and D. Salinas. Vietoris-Rips complexes also provide topologically correct reconstructions of sampled shapes. In Proceedings of the 27th Annual ACM Symposium on Computational Geometry, SoCG '11, pages 491--500, 2011.
[7]
C. Borcea, X. Goaoc, and S. Petitjean. Line transversals to disjoint balls. Discrete & Computational Geometry, 1--3:158--173, 2008.
[8]
K. Borsuk. On the imbedding of systems of compacta in simplicial complexes. Fundamenta Mathematicae, 35:217--234, 1948.
[9]
R. Bott and L. W. Tu. Differential forms in algebraic topology, volume 82 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1982.
[10]
G. E. Bredon. Sheaf theory, volume 170 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1997.
[11]
F. Chazal and S. Y. Oudot. Towards persistence-based reconstruction in Euclidean spaces. In Proceedings of the 24th Annual Symposium on Computational Geometry, SoCG '08, pages 232--241, 2008.
[12]
O. Cheong, X. Goaoc, and A. Holmsen. Lower bounds to Helly numbers of line transversals to disjoint congruent balls. Israel Journal of Mathematics, 2012. To appear.
[13]
O. Cheong, X. Goaoc, A. Holmsen, and S. Petitjean. Hadwiger and Helly-type theorems for disjoint unit spheres. Discrete & Computational Geometry, 1--3:194--212, 2008.
[14]
O. Cheong, X. Goaoc, and H.-S. Na. Geometric permutations of disjoint unit spheres. Computational Geometry: Theory & Applications, 30:253--270, 2005.
[15]
�. Colin de Verdi�re, G. Ginot, and X. Goaoc. Helly numbers of acyclic families. arXiv:1101.6006, 2011.
[16]
L. Danzer, B. Gr�nbaum, and V. Klee. Helly's theorem and its relatives. In V. Klee, editor, Convexity, Proceedings of Symposia in Pure Mathematics, pages 101--180. AMS, 1963.
[17]
V. de Silva and G. Carlsson. Topological estimation using witness complexes. IEEE Symposium on Point-Based Graphics, pages 157--166, 2004.
[18]
H. Debrunner. Helly type theorems derived from basic singular homology. American Mathematical Monthly, 77:375--380, 1970.
[19]
J. Eckhoff. Helly, Radon and Caratheodory type theorems. In J. E. Goodman and J. O'Rourke, editors, Handbook of Convex Geometry, pages 389--448. North Holland, 1993.
[20]
J. Eckhoff and K.-P. Nischke. Morris's pigeonhole principle and the Helly theorem for unions of convex sets. Bulletin of the London Mathematical Society, 41:577--588, 2009.
[21]
H. Edelsbrunner and N. R. Shah. Triangulating topological spaces. International Journal of Computational Geometry and Applications, 7(4):365--378, 1997.
[22]
B. Farb. Group actions and Helly's theorem. Advances in Mathematics, 222:1574--1588, 2009.
[23]
R. Godement. Topologie alg�brique et th�orie des faisceaux. Hermann, Paris, 1973. Troisi�me �dition revue et corrig�e, Publications de l'Institut de Math�matique de l'Universit� de Strasbourg, XIII, Actualit�s Scientifiques et Industrielles, No. 1252.
[24]
P. G. Goerss and J. F. Jardine. Simplicial homotopy theory, volume 174 of Progress in Mathematics. Birkhauser Verlag, Basel, 1999.
[25]
V. Goryunov and D. Mond. Vanishing cohomology of singularities of mappings. Compositio Mathematica, 89(1):45--80, 1993.
[26]
M. J. Greenberg. Lectures on Algebraic Topology. Benjamin, Reading, MA, 1967.
[27]
B. Gr�nbaum and T. Motzkin. On components in some families of sets. Proceedings of the American Mathematical Society, 12:607--613, 1961.
[28]
A. Hatcher. Algebraic topology. Cambridge University Press, 2002. Available at http://www.math.cornell.edu/ hatcher/.
[29]
E. Helly. �ber Mengen konvexer K�rper mit gemeinschaftlichen Punkten. Jahresbericht der Deutschen Mathematiker-Vereinigung, 32:175--176, 1923.
[30]
E. Helly. �ber Systeme von abgeschlossenen Mengen mit gemeinschaftlichen Punkten. Monatshefte f�r Mathematik und Physik, 37:281--302, 1930.
[31]
A. Holmsen. Recent progress on line transversals to families of translated ovals. In J. E. Goodman, J. Pach, and R. Pollack, editors, Computational Geometry - Twenty Years Later, pages 283--298. AMS, 2008.
[32]
G. Kalai and R. Meshulam. Intersections of Leray complexes and regularity of monomial ideals. Journal of Combinatorial Theory, Series A, 113:1586--1592, 2006.
[33]
G. Kalai and R. Meshulam. Leray numbers of projections and a topological Helly-type theorem. Journal of Topology, 1:551--556, 2008.
[34]
M. Kashiwara and P. Schapira. Sheaves on manifolds, volume 292 of Grundlehren der Mathematischen Wissenschaften {Fundamental Principles of Mathematical Sciences}. Springer-Verlag, Berlin, 1990.
[35]
J. Matou\v sek. Using the Borsuk-Ulam Theorem. Springer-Verlag, 2003.
[36]
J. Matousek. A Helly-type theorem for unions of convex sets. Discrete & Computational Geometry, 18:1--12, 1997.
[37]
J. P. May. Simplicial objects in algebraic topology. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1992. Reprint of the 1967 original.
[38]
H. Morris. Two pigeon hole principles and unions of convexly disjoint sets. Phd thesis, California Institute of Technology, 1973.
[39]
L. Santal�. Un theorema sobre conjuntos de paralelepipedos de aristas paralelas. Publ. Inst. Mat. Univ. Nat. Litoral, 2:49--60, 1940.
[40]
S. Smorodinsky, J. S. B. Mitchell, and M. Sharir. Sharp bounds on geometric permutations for pairwise disjoint balls in Rd. Discrete & Computational Geometry, 23:247--259, 2000.
[41]
E. H. Spanier. Algebraic topology. McGraw-Hill Book Co., New York, 1966.
[42]
R. Stanley. f-vectors and $h$-vectors of simplicial posets. J. Pure and Applied Algebra, 71:319--331, 1991.
[43]
H. Tverberg. Proof of Gr�nbaum's conjecture on common transversals for translates. Discrete & Computational Geometry, 4:191--203, 1989.
[44]
R. Wenger. Helly-type theorems and geometric transversals. In J. E. Goodman and J. O'Rourke, editors, Handbook of Discrete & Computational Geometry, chapter 4, pages 73--96. CRC Press LLC, Boca Raton, FL, 2nd edition, 2004.
[45]
Y. Zhou and S. Suri. Geometric permutations of balls with bounded size disparity. Computational Geometry: Theory & Applications, 26:3--20, 2003.

Cited By

View all
  • (2021)Scalar Field Comparison with Topological Descriptors: Properties and Applications for Scientific VisualizationComputer Graphics Forum10.1111/cgf.1433140:3(599-633)Online publication date: 29-Jun-2021
  • (2018)Structure and Stability of the One-Dimensional MapperFoundations of Computational Mathematics10.1007/s10208-017-9370-z18:6(1333-1396)Online publication date: 1-Dec-2018
  • (2016)What can topology tell us about the neural code?Bulletin of the American Mathematical Society10.1090/bull/155454:1(63-78)Online publication date: 27-Sep-2016
  • Show More Cited By

Index Terms

  1. Multinerves and helly numbers of acyclic families

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    SoCG '12: Proceedings of the twenty-eighth annual symposium on Computational geometry
    June 2012
    436 pages
    ISBN:9781450312998
    DOI:10.1145/2261250
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 17 June 2012

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. acyclic family
    2. combinatorics
    3. geometric transversal theory
    4. good cover
    5. helly's theorem
    6. multinerve
    7. nerve
    8. spectral sequence
    9. topology

    Qualifiers

    • Research-article

    Conference

    SoCG '12
    SoCG '12: Symposium on Computational Geometry 2012
    June 17 - 20, 2012
    North Carolina, Chapel Hill, USA

    Acceptance Rates

    Overall Acceptance Rate 625 of 1,685 submissions, 37%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 15 Oct 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2021)Scalar Field Comparison with Topological Descriptors: Properties and Applications for Scientific VisualizationComputer Graphics Forum10.1111/cgf.1433140:3(599-633)Online publication date: 29-Jun-2021
    • (2018)Structure and Stability of the One-Dimensional MapperFoundations of Computational Mathematics10.1007/s10208-017-9370-z18:6(1333-1396)Online publication date: 1-Dec-2018
    • (2016)What can topology tell us about the neural code?Bulletin of the American Mathematical Society10.1090/bull/155454:1(63-78)Online publication date: 27-Sep-2016
    • (2016)Nerve Complexes of Circular ArcsDiscrete & Computational Geometry10.1007/s00454-016-9803-556:2(251-273)Online publication date: 1-Sep-2016
    • (2015)The Offset Filtration of Convex ObjectsAlgorithms - ESA 201510.1007/978-3-662-48350-3_59(705-716)Online publication date: 12-Nov-2015
    • (2014)Automatic surface remeshing of 3D structural models at specified resolution: A method based on Voronoi diagramsComputers & Geosciences10.1016/j.cageo.2013.09.00862(103-116)Online publication date: Jan-2014
    • (2012)Intersection Patterns of Convex Sets via Simplicial Complexes: A SurveyThirty Essays on Geometric Graph Theory10.1007/978-1-4614-0110-0_28(521-540)Online publication date: 29-Oct-2012

    View Options

    Get Access

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media