skip to main content
research-article

A proof theoretic view of spatial and temporal dependencies in biochemical systems

Published: 16 August 2016 Publication History

Abstract

The behavior of biochemical systems such as metabolic and signaling pathways may depend on either the location of the reactants or on the time needed for a reaction to occur. In this paper we propose a formalism for specifying and verifying properties of biochemical systems that combines, coherently, temporal and spatial modalities. To this aim, we consider a fragment of intuitionistic linear logic with subexponentials (SELL). The subexponential signature allows us to capture the spatial relations among the different components of the system and the timed constraints. We illustrate our approach by specifying some well-known biological systems and verifying properties of them. Moreover, we show that our framework is general enough to give a logic-based semantics to P systems. We show that the proposed logical characterizations have a strong level of adequacy. Hence, derivations in SELL follow exactly the behavior of the modeled system.

References

[1]
F. Fages, S. Soliman, Formal cell biology in Biocham, in: LNCS, vol. 5016, Springer, 2008, pp. 54-80.
[2]
F. Ciocchetta, M.L. Guerriero, Modelling biological compartments in Bio-PEPA, Electron. Notes Theor. Comput. Sci., 227 (2009) 77-95.
[3]
L. Dematt�, C. Priami, A. Romanel, The BlenX language: a tutorial, in: LNCS, vol. 5016, Springer, 2008, pp. 313-365.
[4]
A. Abate, Y. Bai, N. Sznajder, C.L. Talcott, A. Tiwari, Quantitative and probabilistic modeling in pathway logic, in: BIBE 2007, IEEE CS, 2007, pp. 922-929.
[5]
J. Fisher, T.A. Henzinger, Executable biology, in: WSC, 2006, pp. 1675-1682.
[6]
J. Girard, Linear logic, Theoret. Comput. Sci., 50 (1987) 1-102.
[7]
V. Danos, J. Joinet, H. Schellinx, The structure of exponentials: uncovering the dynamics of linear logic proofs, in: LNCS, vol. 713, Springer, 1993, pp. 159-171.
[8]
V. Nigam, C. Olarte, E. Pimentel, A general proof system for modalities in concurrent constraint programming, in: LNCS, vol. 8052, Springer, 2013, pp. 410-424.
[9]
C. Olarte, E. Pimentel, V. Nigam, Subexponential concurrent constraint programming, Theoret. Comput. Sci., 606 (2015) 98-120.
[10]
G. P�un, G. Rozenberg, A guide to membrane computing, Theoret. Comput. Sci., 287 (2002) 73-100.
[11]
F. Bernardini, V. Manca, Dynamical aspects of P systems, Biosystems, 70 (2003) 85-93.
[12]
G. Ciobanu, L. Pan, G. P�un, M.J. P�rez-Jim�nez, P systems with minimal parallelism, Theoret. Comput. Sci., 378 (2007) 117-130.
[13]
J.-M. Andreoli, Logic programming with focusing proofs in linear logic, J. Logic Comput., 2 (1992) 297-347.
[14]
F. Fages, P. Ruet, S. Soliman, Linear concurrent constraint programming: operational and phase semantics, Inform. and Comput., 165 (2001) 14-41.
[15]
K. Watkins, I. Cervesato, F. Pfenning, D. Walker, A concurrent logical framework: the propositional fragment, in: LNCS, vol. 3085, Springer, 2003, pp. 355-377.
[16]
A.F. Tiu, D. Miller, A proof search specification of the pi-calculus, Electron. Notes Theor. Comput. Sci., 138 (2005) 79-101.
[17]
I. Cervesato, A. Scedrov, Relating state-based and process-based concurrency through linear logic (full-version), Inform. and Comput., 207 (2009) 1044-1077.
[18]
D. Chiarugi, M. Falaschi, D. Hermith, C. Olarte, Verification of spatial and temporal modalities in biochemical systems, Electron. Notes Theor. Comput. Sci., 316 (2015) 29-44.
[19]
M. Bhattacharjee, R. Raju, A. Radhakrishnan, A bioinformatics resource for TWEAK-Fn14 signaling pathway, J. Signal Transduct. (2012).
[20]
S. Negri, J. von Plato, Structural Proof Theory, Cambridge University Press, 2001.
[21]
D. Miller, A. Saurin, From proofs to focused proofs: a modular proof of focalization in linear logic, in: LNCS, vol. 4646, Springer, 2007, pp. 405-419.
[22]
F. Bernardini, M. Gheorghe, V. Manca, On P systems and almost periodicity, Fund. Inform., 64 (2005) 29-42.
[23]
R. Freund, Asynchronous P systems and P systems working in the sequential mode, in: LNCS, vol. 3365, Springer, 2004, pp. 36-62.
[24]
E.D. Maria, J. Despeyroux, A.P. Felty, A logical framework for systems biology, in: Formal Methods in Macro-Biology - First International Conference, 2014, pp. 136-155.
[25]
S.L. Fink, B.T. Cookson, Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells, Infect. Immun., 84 (2005) 1907-1916.
[26]
D. Miller, G. Nadathur, F. Pfenning, A. Scedrov, Uniform proofs as a foundation for logic programming, Ann. Pure Appl. Logic, 51 (1991) 125-157.
[27]
Z. Manna, A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems - Specification, Springer, 1992.
[28]
L. Caires, L. Cardelli, A spatial logic for concurrency - II, Theoret. Comput. Sci., 322 (2004) 517-565.
[29]
R. Mardare, C. Priami, P. Quaglia, O. Vagin, Model checking biological systems described using ambient calculus, in: LNCS, vol. 3082, Springer, 2005, pp. 85-103.
[30]
Z. Dang, O.H. Ibarra, C. Li, G. Xie, On the decidability of model-checking for P systems, J. Autom. Lang. Comb., 11 (2006) 279-298.
[31]
E.M. Clarke, O. Grumberg, D.A. Peled, Model Checking, MIT Press, 2001.
[32]
D. Chiarugi, M. Falaschi, D. Hermith, C. Olarte, A framework for modelling spatially dependent interactions of biological systems in CCP, in: IWBBIO 2014, Copicentro Editorial, 2014, pp. 912-923.
[33]
D. Chiarugi, M. Falaschi, C. Olarte, C. Palamidessi, A declarative view of signaling pathways, in: Lecture Notes in Computer Science, vol. 9465, Springer, 2015, pp. 183-201.
[34]
C. Olarte, E. Pimentel, Proving concurrent constraint programming correct, revisited, Electron. Notes Theor. Comput. Sci., 312 (2015) 179-195.
[35]
V.A. Saraswat, M.C. Rinard, P. Panangaden, Semantic foundations of concurrent constraint programming, in: POPL 1991, ACM Press, 1991, pp. 333-352.
[36]
E. Pimentel, C. Olarte, V. Nigam, A proof theoretic study of soft concurrent constraint programming, Theory Pract. Log. Program., 14 (2014) 649-663.
[37]
N. Saeedloei, G. Gupta, Timed π-calculus, in: LNCS, vol. 8358, Springer, 2013, pp. 119-135.
[38]
L.A. Harris, J.S. Hogg, J.R. Faeder, Compartmental rule-based modeling of biochemical systems, in: WSC, 2009, pp. 908-919.
[39]
A. Regev, E.M. Panina, W. Silverman, L. Cardelli, E.Y. Shapiro, Bioambients: an abstraction for biological compartments, Theoret. Comput. Sci., 325 (2004) 141-167.
[40]
L. Cardelli, Brane calculi, in: LNCS, vol. 3082, Springer, 2005, pp. 257-278.
[41]
N. Chabrier-Rivier, F. Fages, S. Soliman, The biochemical abstract machine BIOCHAM, in: LNCS, vol. 3082, Springer, 2005, pp. 172-191.
[42]
M.L. Guerriero, C. Priami, A. Romanel, Modeling static biological compartments with beta-binders, in: LNCS, vol. 4545, Springer, 2007, pp. 247-261.
[43]
C. Versari, R. Gorrieri, pi @: a pi-based process calculus for the implementation of compartmentalised bio-inspired calculi, in: LNCS, vol. 5016, Springer, 2008, pp. 449-506.
[44]
A. Hinton, M.Z. Kwiatkowska, G. Norman, D. Parker, PRISM: a tool for automatic verification of probabilistic systems, in: LNCS, vol. 3920, Springer, 2006, pp. 441-444.
[45]
H. Gong, P. Zuliani, A. Komuravelli, J.R. Faeder, E.M. Clarke, Computational modeling and verification of signaling pathways in cancer, in: LNCS, vol. 6479, Springer, 2010, pp. 117-135.
[46]
R. Gori, F. Levi, An analysis for proving temporal properties of biological systems, in: LNCS, vol. 4279, Springer, 2006, pp. 234-252.
[47]
L. Caires, L. Cardelli, A spatial logic for concurrency (part I), Inform. and Comput., 186 (2003) 194-235.
[48]
M. Miculan, G. Bacci, Modal logics for brane calculus, in: LNCS, vol. 4210, Springer, 2006, pp. 1-16.
[49]
C. Bodei, A control flow analysis for beta-binders with and without static compartments, Theoret. Comput. Sci., 410 (2009) 3110-3127.

Cited By

View all
  • (2022)Non-associative, Non-commutative Multi-modal Linear LogicAutomated Reasoning10.1007/978-3-031-10769-6_27(449-467)Online publication date: 8-Aug-2022
  • (2018)Process calculi for biological processesNatural Computing: an international journal10.1007/s11047-018-9673-217:2(345-373)Online publication date: 1-Jun-2018

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Theoretical Computer Science
Theoretical Computer Science  Volume 641, Issue C
August 2016
115 pages

Publisher

Elsevier Science Publishers Ltd.

United Kingdom

Publication History

Published: 16 August 2016

Author Tags

  1. Biochemical systems
  2. Linear logic
  3. Spatial and temporal modalities
  4. Verification of P systems

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 19 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2022)Non-associative, Non-commutative Multi-modal Linear LogicAutomated Reasoning10.1007/978-3-031-10769-6_27(449-467)Online publication date: 8-Aug-2022
  • (2018)Process calculi for biological processesNatural Computing: an international journal10.1007/s11047-018-9673-217:2(345-373)Online publication date: 1-Jun-2018

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media