skip to main content
10.1109/DATE.2005.249acmconferencesArticle/Chapter ViewAbstractPublication PagesdateConference Proceedingsconference-collections
Article

Quantum Circuit Simplification Using Templates

Published: 07 March 2005 Publication History

Abstract

Optimal synthesis of quantum circuits is intractable and heuristic methods must be employed. Templates are a general approach to reversible and quantum circuit simplification. In this paper, we consider the use of templates to simplify a quantum circuit initially found by other means. We present and analyze templates in the general case, and then provide particular details for circuits composed of NOT, CNOT and controlled-sqrt-of-NOT gates. We introduce templates for this set of gates and apply them to simplify both known quantum realizations of Toffoli gates and circuits found by earlier heuristic Fredkin and Toffoli gate synthesis algorithms. While the number of templates is quite small, the reduction in quantum cost is often significant.

References

[1]
{1} IBM's test-tube quantum computer makes history. IBM T.J. Watson Research Center, http://researchweb.watson.ibm .com/resources/news/20011219_quantum.shtml, Dec. 2001.
[2]
{2} S. Aaronson. Multilinear formulas and skepticism of quantum computing. In ACM STOC, 2004.
[3]
{3} A. Agrawal and N. K. Jha. Reversible logic synthesis. In DATE, pages 1384-1385, Paris, France, February 2004.
[4]
{4} A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVinchenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter. Elementary gates for quantum computation. Physical Review A, 52:3457-3467, 1995.
[5]
{5} E. Fredkin and T. Toffoli. Conservative logic. International Journal of Theoretical Physics, 21:219-253, 1982.
[6]
{6} W. N. N. Hung, X. Song, G. Yang, J. Yang, and M. Perkowski. Quantum logic synthesis by symbolic reachability analysis. In DAC, pages 838-841, June 2004.
[7]
{7} K. Iwama, Y. Kambayashi, and S. Yamashita. Transformation rules for designing CNOT-based quantum circuits. In DAC, pages 419-424, June 2002.
[8]
{8} P. Kerntopf. A new heuristic algorithm for reversible logic synthesis. In DAC, pages 834-837, June 2004.
[9]
{9} C. Lomont. Quantum circuit identities. Technical Report quant-ph/0307111, Quant-Ph ArXiv, July 2003.
[10]
{10} D. Maslov and G. Dueck. Improved quantum cost for n-bit Toffoli gates. IEE Electronics Letters, 39(25):1790-1791, December 2003, quant-ph/0403053.
[11]
{11} D. Maslov, G. Dueck, and N. Scott. Reversible logic synthesis benchmarks page. www.cs.uvic.ca/~dmaslov/, Aug. 2004.
[12]
{12} D. Maslov, G. W. Dueck, and D. M. Miller. Fredkin/Toffoli templates for reversible logic synthesis. In ICCAD, pages 256-261, November 2003.
[13]
{13} D. Maslov, G.W. Dueck, and D. M. Miller. Simplification of Toffoli networks via templates. In Symposium on Integrated Circuits and System Design, pages 53-58, September 2003.
[14]
{14} D. M. Miller, D. Maslov, and G.W. Dueck. A transformation based algorithm for reversible logic synthesis. In DAC, pages 318-323, June 2003.
[15]
{15} A. Mishchenko and M. Perkowski. Logic synthesis of reversible wave cascades. In IWLS, pages 197-202, June 2002.
[16]
{16} M. Nielsen and I. Chuang. Quantum Computation and Quantum Information. Cambridge Univ. Press, 2000.
[17]
{17} A. Peres. Reversible logic and quantum computers. Physical Review A, 32:3266-3276, 1985.
[18]
{18} V. V. Shende, A. K. Prasad, K. N. Patel, I. L. Markov, and J. P. Hayes. Scalable simplification of reversible logic circuits. In IWLS, May 2003.
[19]
{19} J. A. Smolin and D. P. DiVincenzo. Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate. Physical Review A, 53:2855-2856, 1996.
[20]
{20} T. Toffoli. Reversible computing. Tech memo MIT/LCS/TM- 151, MIT Lab for Comp. Sci, 1980.
[21]
{21} G. F. Viamontes, I. L. Markov, and J. P. Hayes. Graph-based simulation of quantum computation in the state-vector and density-matrix representation. In SPIE, April 2004.

Cited By

View all
  • (2021)Designing calibration and expressivity-efficient instruction sets for quantum computingProceedings of the 48th Annual International Symposium on Computer Architecture10.1109/ISCA52012.2021.00071(846-859)Online publication date: 14-Jun-2021
  • (2019)On the analogy between quantum circuit design automation and virtual network embeddingProceedings of the 34th ACM/SIGAPP Symposium on Applied Computing10.1145/3297280.3297419(1378-1383)Online publication date: 8-Apr-2019
  • (2017)Reversible circuit synthesis by genetic programming using dynamic gate librariesQuantum Information Processing10.1007/s11128-017-1609-816:6(1-24)Online publication date: 1-Jun-2017
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
DATE '05: Proceedings of the conference on Design, Automation and Test in Europe - Volume 2
March 2005
630 pages
ISBN:0769522882

Sponsors

Publisher

IEEE Computer Society

United States

Publication History

Published: 07 March 2005

Check for updates

Qualifiers

  • Article

Conference

DATE05
Sponsor:

Acceptance Rates

Overall Acceptance Rate 518 of 1,794 submissions, 29%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 18 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2021)Designing calibration and expressivity-efficient instruction sets for quantum computingProceedings of the 48th Annual International Symposium on Computer Architecture10.1109/ISCA52012.2021.00071(846-859)Online publication date: 14-Jun-2021
  • (2019)On the analogy between quantum circuit design automation and virtual network embeddingProceedings of the 34th ACM/SIGAPP Symposium on Applied Computing10.1145/3297280.3297419(1378-1383)Online publication date: 8-Apr-2019
  • (2017)Reversible circuit synthesis by genetic programming using dynamic gate librariesQuantum Information Processing10.1007/s11128-017-1609-816:6(1-24)Online publication date: 1-Jun-2017
  • (2015)Reducing the number of ancilla qubits and the gate count required for creating large controlled operationsQuantum Information Processing10.1007/s11128-014-0900-114:3(891-899)Online publication date: 1-Mar-2015
  • (2014)An Algorithm for Quantum Template MatchingACM Journal on Emerging Technologies in Computing Systems10.1145/262953711:3(1-20)Online publication date: 30-Dec-2014
  • (2014)RMDDSACM Journal on Emerging Technologies in Computing Systems10.1145/256492310:2(1-25)Online publication date: 6-Mar-2014
  • (2014)Considering nearest neighbor constraints of quantum circuits at the reversible circuit levelQuantum Information Processing10.1007/s11128-013-0642-513:2(185-199)Online publication date: 1-Feb-2014
  • (2011)Optimization of reversible circuits using reconfigured templatesProceedings of the Third international conference on Reversible Computation10.1007/978-3-642-29517-1_4(43-53)Online publication date: 4-Jul-2011
  • (2010)Rule-based optimization of reversible circuitsProceedings of the 2010 Asia and South Pacific Design Automation Conference10.5555/1899721.1899916(849-854)Online publication date: 18-Jan-2010
  • (2010)Reversible circuit synthesis using a cycle-based approachACM Journal on Emerging Technologies in Computing Systems10.1145/1877745.18777476:4(1-26)Online publication date: 21-Dec-2010
  • Show More Cited By

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media