skip to main content
article

Subsystem surface codes with three-qubit check operators

Published: 01 November 2013 Publication History

Abstract

We propose a simplified version of the Kitaev's surface code in which error correction requires only three-qubit parity measurements for Pauli operators XXX and ZZZ. The new code belongs to the class of subsystem stabilizer codes. It inherits many favorable properties of the standard surface code such as encoding of multiple logical qubits on a planar lattice with punctured holes, efficient decoding by either minimum-weight matching or renormalization group methods, and high error threshold. The new subsystem surface code (SSC) gives rise to an exactly solvable Hamiltonian with 3-qubit interactions, topologically ordered ground state, and a constant energy gap. We construct a local unitary transformation mapping the SSC Hamiltonian to the one of the ordinary surface code thus showing that the two Hamiltonians belong to the same topological class. We describe error correction protocols for the SSC and determine its error thresholds under several natural error models. In particular, we show that the SSC has error threshold approximately 0:6% for the standard circuit-based error model studied in the literature. We also consider a model in which three-qubit parity operators can be measured directly. We show that the SSC has error threshold approximately 0:97% in this setting.

References

[1]
A. Y. Kitaev, Annals of Physics 303, 2 (2003).
[2]
S. Bravyi and A. Y. Kitaev, ArXiv quant-ph/9811052 (1998).
[3]
E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, J. Math. Phys. 43, 4452 (2002).
[4]
D. P. DiVincenzo, Physica Scripta Volume T 137, 014020 (2009).
[5]
A. Fowler, A. Whiteside, and L. Hollenberg, Phys. Rev. Lett. 108, 180501 (2012a).
[6]
H. Bombin and M. A. Martin-Delgado, J. Phys. A: Math. Theor. 42, 095302 (2009).
[7]
R. Raussendorf and J. Harrington, Phys. Rev. Lett. 98, 190504 (2007).
[8]
A. G. Fowler, A. M. Stephens, and P. Groszkowski, Phys. Rev. A 80, 052312 (2009).
[9]
R. Raussendorf, J. Harrington, and K. Goyal, New J. Phys. 9, 199 (2007).
[10]
A. G. Fowler, A. C. Whiteside, and L. C. Hollenberg, Phys. Rev. Lett. 108, 180501 (2012b).
[11]
G. Duclos-Cianci and D. Poulin, Phys. Rev. Lett. 104, 050504 (2010a).
[12]
G. Duclos-Cianci and D. Poulin, Information Theory Workshop (ITW), 2010 IEEE pp. 1-5 (2010b).
[13]
S. Bravyi and J. Haah, arXiv:1112.3252 (2011).
[14]
H. Bombin, Phys. Rev. A 81 (2010).
[15]
H. Bombin and M. A. Martin-Delgado, Phys. Rev. Lett. 97 (2006).
[16]
D. Bacon, Phys. Rev. A 73, 012340 (2006).
[17]
D. Poulin, Phys. Rev. Lett. 95, 230504 (2005).
[18]
S. Bravyi, Phys. Rev. A 83, 012320 (2011).
[19]
M. Suchara, S. Bravyi, and B. M. Terhal, J. Phys. A: Math. Theor. 44, 155301 (2011).
[20]
H. Bombin, G. Duclos-Cianci, and D. Poulin, arXiv:1103.4606 (2010).
[21]
D. P. DiVincenzo and F. Solgun, arXiv:1205.1910 (2012).
[22]
D. Aharonov and L. Eldar, arXiv:1102.0770 (2011).
[23]
M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).
[24]
X. Chen, Z.-C. Gu, and X.-G. Wen, Phys. Rev. B 82, 155138 (2010).
[25]
H. Bombin, arXiv:1107.2707 (2011).
[26]
S. de Queiroz, Phys. Rev. B 73, 064410 (2006).
[27]
D. S. Wang, A. G. Fowler, and L. C. L. Hollenberg, Phys. Rev. A 83, 020302(R) (2011).
[28]
J. Chow, L. DiCarlo, J. Gambetta, A. Nunnenkamp, L. Bishop, L. Frunzio, M. Devoret, S. Girvin, and R. Schoelkopf, Phys. Rev. A 81, 062325 (2010).
[29]
S. Filipp, P. Maurer, P. Leek, M. Baur, R. Bianchetti, J. Fink, M. Goeppl, L. Steffen, J. Gambetta, A. Blais, et al., Phys. Rev. Lett. 102, 200402 (2009).
[30]
L. DiCarlo, J. Chow, J. Gambetta, L. Bishop, B. Johnson, D. Schuster, J. Majer, A. Blais, L. Frunzio, S. Girvin, et al., Nature 460, 240 (2009).
[31]
D. Riste, J. van Leeuwen, H.-S. Ku, W. Lehnert, and L. DiCarlo, arXiv:1204.2479 (2012).
[32]
A. B. K. Lalumi�re, J.M. Gambetta, Phys. Rev. A 81, 040301 (2010).
[33]
E. Magesan, J. M. Gambetta, B. R. Johnson, C. A. Ryan, J. M. Chow, S. T. Merkel, M. P. da Silva, G. A. Keefe, M. B. Rothwell, T. A. Ohki, et al., arXiv:1203.4550 (2012).
[34]
B. R. Johnson, M. D. Reed, A. A. Houck, D. I. Schuster, L. S. Bishop, E. Ginossar, J. M. Gambetta, L. DiCarlo, L. Frunzio, S. M. Girvin, et al., Nature Phys. 6, 663 (2010).
[35]
D. Poulin and Y. Chung, Quant. Inf. and Comp. 8, 986 (2008).
[36]
G. Duclos-Cianci and D. Poulin, In preparation.
[37]
A. J. Landahl, J. T. Anderson, and P. R. Rice, arXiv:1108.5738 (2011).

Cited By

View all
  • (2018)Decoding Topological Subsystem Color Codes and Generalized Subsystem Surface Codes2018 IEEE Information Theory Workshop (ITW)10.1109/ITW.2018.8613474(1-5)Online publication date: 25-Nov-2018
  • (2017)Sparse Quantum Codes From Quantum CircuitsIEEE Transactions on Information Theory10.1109/TIT.2017.266319963:4(2464-2479)Online publication date: 1-Apr-2017
  • (2016)A heterogeneous quantum computer architectureProceedings of the ACM International Conference on Computing Frontiers10.1145/2903150.2906827(323-330)Online publication date: 16-May-2016
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Quantum Information & Computation
Quantum Information & Computation  Volume 13, Issue 11-12
November 2013
180 pages

Publisher

Rinton Press, Incorporated

Paramus, NJ

Publication History

Published: 01 November 2013
Revised: 02 April 2013
Received: 09 November 2012

Author Tags

  1. quantum error correcting codes
  2. topological quantum order

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 16 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2018)Decoding Topological Subsystem Color Codes and Generalized Subsystem Surface Codes2018 IEEE Information Theory Workshop (ITW)10.1109/ITW.2018.8613474(1-5)Online publication date: 25-Nov-2018
  • (2017)Sparse Quantum Codes From Quantum CircuitsIEEE Transactions on Information Theory10.1109/TIT.2017.266319963:4(2464-2479)Online publication date: 1-Apr-2017
  • (2016)A heterogeneous quantum computer architectureProceedings of the ACM International Conference on Computing Frontiers10.1145/2903150.2906827(323-330)Online publication date: 16-May-2016
  • (2015)Sparse Quantum Codes from Quantum CircuitsProceedings of the forty-seventh annual ACM symposium on Theory of Computing10.1145/2746539.2746608(327-334)Online publication date: 14-Jun-2015

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media