Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (656)

Search Parameters:
Keywords = altimetry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 9091 KiB  
Article
An Updated Analysis of Long-Term Sea Level Change in China Seas and Their Adjacent Ocean with T/P: Jason-1/2/3 from 1993 to 2022
by Lingling Wu, Jiajia Yuan, Zhendong Wu, Liyu Hu, Jiaojiao Zhang and Jianpin Sun
J. Mar. Sci. Eng. 2024, 12(10), 1889; https://doi.org/10.3390/jmse12101889 - 21 Oct 2024
Abstract
This study analyzes sea level changes (SLCs) in China seas and their adjacent ocean (CSO) using data from the TOPEX/Poseidon and Jason-1/2/3 satellite altimetry missions from 1993 to 2022. A 30-year time series of sea level anomalies (SLAs) is established, with trends, spatial [...] Read more.
This study analyzes sea level changes (SLCs) in China seas and their adjacent ocean (CSO) using data from the TOPEX/Poseidon and Jason-1/2/3 satellite altimetry missions from 1993 to 2022. A 30-year time series of sea level anomalies (SLAs) is established, with trends, spatial distribution, and periodicities analyzed through least squares linear fitting, Kriging interpolation, and wavelet analysis. The average yearly sea level rise in the CSO is 3.87 mm, with specific rates of 4.15 mm/yr in the Bohai Sea, 3.96 mm/yr in the Yellow Sea, 3.54 mm/yr in the East China Sea, and 4.09 mm/yr in the South China Sea. This study examines the spatiotemporal variations in SLAs and identifies an annual primary cycle, along with a new periodicity of 11 years. Utilizing 30 years of satellite observation data, particularly the newer Jason-3 satellite data, this reanalysis reveals new findings related to cycles. Overall, the research updates previous studies and provides valuable insights for further investigations into China’s marine environment. Full article
Show Figures

Figure 1

16 pages, 12826 KiB  
Article
Seasonal and Interannual Variations in Sea Ice Thickness in the Weddell Sea, Antarctica (2019–2022) Using ICESat-2
by Mansi Joshi, Alberto M. Mestas-Nuñez, Stephen F. Ackley, Stefanie Arndt, Grant J. Macdonald and Christian Haas
Remote Sens. 2024, 16(20), 3909; https://doi.org/10.3390/rs16203909 - 21 Oct 2024
Abstract
The sea ice extent in the Weddell Sea exhibited a positive trend from the start of satellite observations in 1978 until 2016 but has shown a decreasing trend since then. This study analyzes seasonal and interannual variations in sea ice thickness using ICESat-2 [...] Read more.
The sea ice extent in the Weddell Sea exhibited a positive trend from the start of satellite observations in 1978 until 2016 but has shown a decreasing trend since then. This study analyzes seasonal and interannual variations in sea ice thickness using ICESat-2 laser altimetry data over the Weddell Sea from 2019 to 2022. Sea ice thickness was calculated from ICESat-2’s ATL10 freeboard product using the Improved Buoyancy Equation. Seasonal variability in ice thickness, characterized by an increase from February to September, is more pronounced in the eastern Weddell sector, while interannual variability is more evident in the western Weddell sector. The results were compared with field data obtained between 2019 and 2022, showing a general agreement in ice thickness distributions around predominantly level ice. A decreasing trend in sea ice thickness was observed when compared to measurements from 2003 to 2017. Notably, the spring of 2021 and summer of 2022 saw significant decreases in Sea Ice Extent (SIE). Although the overall mean sea ice thickness remained unchanged, the northwestern Weddell region experienced a noticeable decrease in ice thickness. Full article
(This article belongs to the Special Issue Monitoring Sea Ice Loss with Remote Sensing Techniques)
Show Figures

Figure 1

22 pages, 7116 KiB  
Article
Regional Mean Sea Level Variability Due to Tropical Cyclones: Insights from August Typhoons
by MyeongHee Han, SungHyun Nam and Hak-Soo Lim
J. Mar. Sci. Eng. 2024, 12(10), 1830; https://doi.org/10.3390/jmse12101830 - 14 Oct 2024
Viewed by 514
Abstract
This study investigates the interannual variations in regional mean sea levels (MSLs) of the northeast Asian marginal seas (NEAMS) during August, focusing on the role of typhoon activity from 1993 to 2019. The NEAMS are connected to the Pacific through the East China [...] Read more.
This study investigates the interannual variations in regional mean sea levels (MSLs) of the northeast Asian marginal seas (NEAMS) during August, focusing on the role of typhoon activity from 1993 to 2019. The NEAMS are connected to the Pacific through the East China Sea (ECS) and narrow, shallow straits in the east, where inflow from the southern boundary (ECS), unless balanced by eastern outflow, leads to significant convergence or divergence, as well as subsequent changes in regional MSLs. Satellite altimetry and tide-gauge data reveal that typhoon-induced Ekman transport plays a key role in MSL variability, with increased inflow raising MSLs during active typhoon seasons. In contrast, weak typhoon activity reduces inflow, resulting in lower MSLs. This study’s findings have significant implications for coastal management, as the projected changes in tropical cyclone frequency and intensity due to climate change could exacerbate sea level rise and flooding risks. Coastal communities in the NEAMS region will need to prioritize enhanced flood defenses, early warning systems, and adaptive land use strategies to mitigate these risks. This is the first study to link typhoon frequency directly to NEAMS MSL variability, highlighting the critical role of wind-driven processes in regional sea level changes. Full article
(This article belongs to the Special Issue Air-Sea Interaction and Marine Dynamics)
Show Figures

Figure 1

16 pages, 12210 KiB  
Article
Analysis of the Influence of Different Reference Models on Recovering Gravity Anomalies from Satellite Altimetry
by Yu Han, Fangjun Qin, Hongwei Wei, Fengshun Zhu and Leiyuan Qian
Remote Sens. 2024, 16(20), 3758; https://doi.org/10.3390/rs16203758 - 10 Oct 2024
Viewed by 377
Abstract
A satellite altimetry mission can measure high-precision sea surface height (SSH) to recover a marine gravity field. The reference gravity field model plays an important role in this recovery. In this paper, reference gravity field models with different degrees are used to analyze [...] Read more.
A satellite altimetry mission can measure high-precision sea surface height (SSH) to recover a marine gravity field. The reference gravity field model plays an important role in this recovery. In this paper, reference gravity field models with different degrees are used to analyze their effects on the accuracy of recovering gravity anomalies using the inverse Vening Meinesz (IVM) method. We evaluate the specific performance of different reference gravity field models using CryoSat-2 and HY-2A under different marine bathymetry conditions. For the assessments using 1-mGal-accuracy shipborne gravity anomalies and the DTU17 model based on the inverse Stokes principle, the results show that CryoSat-2 and HY-2A using XGM2019e_2159 obtains the highest inversion accuracy when marine bathymetry is less than 2000 m. Compared with the EGM2008 model, the accuracy of CryoSat-2 and HY-2A is improved by 0.6747 mGal and 0.6165 mGal, respectively. A weighted fusion method that incorporates multiple reference models is proposed to improve the accuracy of recovering gravity anomalies using altimetry satellites in shallow water. The experiments show that the weighted fusion method using different reference models can improve the accuracy of recovering gravity anomalies in shallow water. Full article
(This article belongs to the Special Issue Remote Sensing Applications in Ocean Observation (Third Edition))
Show Figures

Figure 1

17 pages, 7040 KiB  
Article
Observation of Statistical Characteristics and Vertical Structures of Surface Warm Cyclonic Eddies and Cold Anticyclonic Eddies in the North Pacific Subtropical Countercurrent Region
by Yaowei Ma, Qinghong Li, Xiangjun Yu, Song Li and Xingyu Zhou
J. Mar. Sci. Eng. 2024, 12(10), 1783; https://doi.org/10.3390/jmse12101783 - 8 Oct 2024
Viewed by 459
Abstract
Conventional wisdom about mesoscale eddies is that cyclonic (anticyclonic) eddies are commonly associated with cold(warm) surface cores. Nevertheless, plenties of surface warm cyclonic eddies (WCEs) and cold anticyclonic eddies (CAEs) in the North Pacific Subtropical Countercurrent (STCC) region are observed by a synergistic [...] Read more.
Conventional wisdom about mesoscale eddies is that cyclonic (anticyclonic) eddies are commonly associated with cold(warm) surface cores. Nevertheless, plenties of surface warm cyclonic eddies (WCEs) and cold anticyclonic eddies (CAEs) in the North Pacific Subtropical Countercurrent (STCC) region are observed by a synergistic investigation based on data from satellite altimetry, microwave radiometer, and Argo float profiles in this study. The results indicate that these two types of abnormal eddies (WCEs and CAEs) are prevalent in the STCC region, comprising approximately 30% of all eddies detected via satellite observations. We then analyze their spatial-temporal distribution characteristics and composite vertical structures. A statistical comparison with surface cold cyclonic eddies (CCEs) and warm anticyclonic eddies (WAEs) reveals notable differences between the anomalous and typical eddies. Additionally, we present the composite vertical structures of temperature and salinity anomalies for the anomalous eddies across five delineated subregions within an eddy-coordinate system. Furthermore, the close relationship between these abnormal eddies and subsurface-intensified mesoscale eddies are discussed. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

21 pages, 15805 KiB  
Article
Data-Driven Calibration of SWOT’s Systematic Errors: First In-Flight Assessment
by Clément Ubelmann, Gérald Dibarboure, Benjamin Flamant, Antoine Delepoulle, Maxime Vayre, Yannice Faugère, Pierre Prandi, Matthias Raynal, Frédéric Briol, Geoffroy Bracher and Emeline Cadier
Remote Sens. 2024, 16(19), 3558; https://doi.org/10.3390/rs16193558 - 25 Sep 2024
Viewed by 425
Abstract
The SWOT satellite, carrying the KaRIN first wide-swath onboard altimeter, was launched in December 2022, and has now delivered more than a year of surface water elevation data over the ocean and inland lakes/rivers. These data are affected by systematic errors which constitute [...] Read more.
The SWOT satellite, carrying the KaRIN first wide-swath onboard altimeter, was launched in December 2022, and has now delivered more than a year of surface water elevation data over the ocean and inland lakes/rivers. These data are affected by systematic errors which constitute the dominant part of the error budget at scales larger than a few thousands of kilometers. Some strategies for their estimation and calibration were explored during the pre-launch studies with performance estimations. Now, based on the real data, we propose in this study to assess the systematic error budget with statistical methods relying on spectral and co-spectral analysis. From this assessment, suggesting very low error levels (below requirements), we propose the implementation of the calibration algorithms at Level-2 and Level-3 with a few minor adjustments justified by the error spectra. The calibrated products are then validated with usual CalVal metrics. Full article
(This article belongs to the Section Satellite Missions for Earth and Planetary Exploration)
Show Figures

Figure 1

17 pages, 2199 KiB  
Review
Stormwater Management in Urban Coastal Areas—A Review
by António Geraldes, Francisco Piqueiro, Cristina Santos and Cristina Matos
Water 2024, 16(19), 2717; https://doi.org/10.3390/w16192717 - 24 Sep 2024
Viewed by 650
Abstract
Stormwater management in coastal urban cities, where drainage networks are influenced by marine dynamics and specific soil and altimetry conditions, has specific challenges that need to be addressed to ensure adequate management in such areas, which are also heavily affected by floods. Their [...] Read more.
Stormwater management in coastal urban cities, where drainage networks are influenced by marine dynamics and specific soil and altimetry conditions, has specific challenges that need to be addressed to ensure adequate management in such areas, which are also heavily affected by floods. Their location downstream of drainage basins and the interaction of network outfalls with current and tidal variability increases the vulnerability of populations and should therefore be the target of specific studies. This article presents a literature review, where publications that focus on stormwater management in coastal urban areas were identified and analyzed. The main objective was to present the key issues related to drainage in coastal areas, the most relevant challenges, the solutions and strategies that reveal the greater potential for application and the challenges for modeling this type of case. It is intended to provide a grounded basis for new ways of optimizing stormwater drainage in coastal areas and promote a sustainable urban water cycle. This review reveals the necessity to implement a multidisciplinary approach to minimize three main issues: urban flooding, stormwater pollution and groundwater salinization, including the adaptation of existing infrastructures, complementing them with control solutions at source, correct urban planning and the involvement of populations. For an effective management of urban stormwater drainage in coastal areas, this approach must be carried out on a watershed scale, duly supported by reliable decision support tools and monitoring systems. Full article
(This article belongs to the Special Issue Urban Drainage Systems and Stormwater Management)
Show Figures

Figure 1

17 pages, 8493 KiB  
Article
Fine-Scale Eddies Detected by SWOT in the Kuroshio Extension
by Tianshi Du and Zhao Jing
Remote Sens. 2024, 16(18), 3488; https://doi.org/10.3390/rs16183488 - 20 Sep 2024
Viewed by 519
Abstract
Conventional altimetry has greatly advanced our understanding of mesoscale eddies but falls short in studying fine-scale eddies (<150 km). The newly launched Surface Water and Ocean Topography (SWOT) altimeter, however, with its unprecedented high-resolution capabilities, offers new opportunities to observe these fine-scale eddies. [...] Read more.
Conventional altimetry has greatly advanced our understanding of mesoscale eddies but falls short in studying fine-scale eddies (<150 km). The newly launched Surface Water and Ocean Topography (SWOT) altimeter, however, with its unprecedented high-resolution capabilities, offers new opportunities to observe these fine-scale eddies. In this study, we use SWOT data to explore these previously elusive fine-scale eddies in the Kuroshio Extension. During SWOT’s fast sampling phase from 29 May 2023 to 10 July 2023, we identified an average of 4.5 fine-scale eddies within each 120 km wide swath. Cyclonic eddies, which are slightly more frequent than the anticyclonic ones (ratio of 1.16), have a similar mean radius of 23.4 km. However, cyclonic eddies exhibit higher amplitudes, averaging 3.5 cm compared to 2.8 cm for anticyclonic eddies. In contrast to the mesoscale eddies detected by conventional altimeters, the fine-scale eddies revealed by SWOT are characterized by smaller sizes and weaker amplitudes. This study offers a preliminary view of fine-scale eddy characteristics from space, highlighting SWOT’s potential to advance our understanding of these dynamic processes. Nonetheless, it also emphasizes the necessity for comprehensive analysis to fully exploit the satellite’s capabilities in monitoring and interpreting complex eddy behaviors. Full article
(This article belongs to the Special Issue Applications of Satellite Altimetry in Ocean Observation)
Show Figures

Figure 1

31 pages, 6226 KiB  
Article
A Software Tool for ICESat and ICESat-2 Laser Altimetry Data Processing, Analysis, and Visualization: Description, Features, and Usage
by Bruno Silva and Luiz Guerreiro Lopes
Software 2024, 3(3), 380-410; https://doi.org/10.3390/software3030020 - 18 Sep 2024
Viewed by 590
Abstract
This paper presents a web-based software tool designed to process, analyze, and visualize satellite laser altimetry data, specifically from the Ice, Cloud, and land Elevation Satellite (ICESat) mission, which collected data from 2003 to 2009, and ICESat-2, which was launched in 2018 and [...] Read more.
This paper presents a web-based software tool designed to process, analyze, and visualize satellite laser altimetry data, specifically from the Ice, Cloud, and land Elevation Satellite (ICESat) mission, which collected data from 2003 to 2009, and ICESat-2, which was launched in 2018 and is currently operational. These data are crucial for studying and understanding changes in Earth’s surface and cryosphere, offering unprecedented accuracy in quantifying such changes. The software tool ICEComb provides the capability to access the available data from both missions, interactively visualize it on a geographic map, locally store the data records, and process, analyze, and explore the data in a detailed, meaningful, and efficient manner. This creates a user-friendly online platform for the analysis, exploration, and interpretation of satellite laser altimetry data. ICEComb was developed using well-known and well-documented technologies, simplifying the addition of new functionalities and extending its applicability to support data from different satellite laser altimetry missions. The tool’s use is illustrated throughout the text by its application to ICESat and ICESat-2 laser altimetry measurements over the Mirim Lagoon region in southern Brazil and Uruguay, which is part of the world’s largest complex of shallow-water coastal lagoons. Full article
Show Figures

Figure 1

17 pages, 11732 KiB  
Article
Two-Dimensional Legendre Polynomial Method for Internal Tide Signal Extraction
by Yunfei Zhang, Cheng Luo, Haibo Chen, Wei Cui and Xianqing Lv
Remote Sens. 2024, 16(18), 3447; https://doi.org/10.3390/rs16183447 - 17 Sep 2024
Viewed by 420
Abstract
This study employs the two-dimensional Legendre polynomial fitting (2-D LPF) method to fit M2 tidal harmonic constants from satellite altimetry data within the region of 53°E–131°E, 34°S–6°N, extracting internal tide signals acting on the sea surface. The M2 tidal harmonic constants are derived [...] Read more.
This study employs the two-dimensional Legendre polynomial fitting (2-D LPF) method to fit M2 tidal harmonic constants from satellite altimetry data within the region of 53°E–131°E, 34°S–6°N, extracting internal tide signals acting on the sea surface. The M2 tidal harmonic constants are derived from the sea surface height (SSH) data of the TOPEX/Poseidon (T/P), Jason-1, Jason-2, and Jason-3 satellites via t-tide analysis. We validate the 2-D LPF method against the 300 km moving average (300 km smooth) method and the one-dimensional Legendre polynomial fitting (1-D LPF) method. Through cross-validation across 42 orbits, the optimal polynomial orders are determined to be seven for 1-D LPF, and eight and seven for the longitudinal and latitudinal directions in 2-D LPF, respectively. The 2-D LPF method demonstrated superior spatial continuity and smoothness of internal tide signals. Further single-orbit correlation analysis confirmed generally higher correlation with topographic and density perturbations (correlation coefficients: 0.502, 0.620, 0.245; 0.420, 0.273, −0.101), underscoring its accuracy. Overall, the 2-D LPF method can use all regional data points, overcoming the limitations of single-orbit approaches and proving its effectiveness in extracting internal tide signals acting on the sea surface. Full article
(This article belongs to the Special Issue Remote Sensing Applications in Ocean Observation (Third Edition))
Show Figures

Figure 1

18 pages, 6210 KiB  
Article
Research on Glacier Changes and Their Influencing Factors in the Yigong Zangbo River Basin of the Tibetan Plateau, China, Based on ICESat-2 Data
by Wei Nie, Qiqi Du, Xuepeng Zhang, Kunxin Wang, Yang Liu, Yongjie Wang, Peng Gou, Qi Luo and Tianyu Zhou
Water 2024, 16(18), 2617; https://doi.org/10.3390/w16182617 - 15 Sep 2024
Viewed by 454
Abstract
The intense changes in glaciers in the southeastern Tibetan Plateau (SETP) have essential impacts on regional water resource management. In order to study the seasonal fluctuations of glaciers in this region and their relationship with climate change, we focus on the Yigong Zangbo [...] Read more.
The intense changes in glaciers in the southeastern Tibetan Plateau (SETP) have essential impacts on regional water resource management. In order to study the seasonal fluctuations of glaciers in this region and their relationship with climate change, we focus on the Yigong Zangbo River Basin in the SETP, extract the annual and seasonal variations of glaciers in the basin during 2018–2023, and analyze their spatio-temporal characteristics through the seasonal-trend decomposition using the LOESS (STL) method. Finally, combining the Extreme Gradient Boosting (XGBoost) model and the Shapley additive explanations (SHAP) model, we assess the comprehensive impact of meteorological factors such as temperature and snowfall on glacier changes. The results indicate that glaciers in the Yigong Zangbo River Basin experienced remarkable mass loss during 2018–2023, with an average annual melting rate of −0.83 ± 0.12 m w.e.∙yr−1. The glacier mass exhibits marked seasonal fluctuations, with increases in January–March (JFM) and April–June (AMJ) and noticeable melting in July–September (JAS) and October–December (OND). The changes over these four periods are 2.12 ± 0.04 m w.e., 0.93 ± 0.15 m w.e., −1.58 ± 0.19 m w.e., and −1.32 ± 0.17 m w.e., respectively. Temperature has been identified as the primary meteorological driver of glacier changes in the study area, surpassing the impact of snowfall. This study uses advanced altimetry data and meteorological data to monitor and analyze glacier changes, which provides valuable data for cryosphere research and also validates a set of replicable research methods, which provides support for future research in related fields. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

23 pages, 4848 KiB  
Article
Summer Chukchi Sea Near-Surface Salinity Variability in Satellite Observations and Ocean Models
by Semyon A. Grodsky, Nicolas Reul and Douglas Vandemark
Remote Sens. 2024, 16(18), 3397; https://doi.org/10.3390/rs16183397 - 12 Sep 2024
Viewed by 574
Abstract
The Chukchi Sea is an open estuary in the southwestern Arctic. Its near-surface salinities are higher than those of the surrounding open Arctic waters due to the key inflow of saltier and warmer Pacific waters through the Bering Strait. This salinity distribution may [...] Read more.
The Chukchi Sea is an open estuary in the southwestern Arctic. Its near-surface salinities are higher than those of the surrounding open Arctic waters due to the key inflow of saltier and warmer Pacific waters through the Bering Strait. This salinity distribution may suggest that interannual changes in the Bering Strait mass transport are the sole and dominant factor shaping the salinity distribution in the downstream Chukchi Sea. Using satellite sea surface salinity (SSS) retrievals and altimetry-based estimates of the Bering Strait transport, the relationship between the Strait transport and Chukchi Sea SSS distributions is analyzed from 2010 onward, focusing on the ice-free summer to fall period. A comparison of five different satellite SSS products shows that anomalous SSS spatially averaged over the Chukchi Sea during the ice-free period is consistent among them. Observed interannual temporal change in satellite SSS is confirmed by comparison with collocated ship-based thermosalinograph transect datasets. Bering Strait transport variability is known to be driven by the local meridional wind stress and by the Pacific-to-Arctic sea level gradient (pressure head). This pressure head, in turn, is related to an Arctic Oscillation-like atmospheric mean sea level pattern over the high-latitude Arctic, which governs anomalous zonal winds over the Chukchi Sea and affects its sea level through Ekman dynamics. Satellite SSS anomalies averaged over the Chukchi Sea show a positive correlation with preceding months’ Strait transport anomalies. This correlation is confirmed using two longer (>40-year), separate ocean data assimilation models, with either higher- (0.1°) or lower-resolution (0.25°) spatial resolution. The relationship between the Strait transport and Chukchi Sea SSS anomalies is generally stronger in the low-resolution model. The area of SSS response correlated with the Strait transport is located along the northern coast of the Chukotka Peninsula in the Siberian Coastal Current and adjacent zones. The correlation between wind patterns governing Bering Strait variability and Siberian Coastal Current variability is driven by coastal sea level adjustments to changing winds, in turn driving the Strait transport. Due to the Chukotka coastline configuration, both zonal and meridional wind components contribute. Full article
(This article belongs to the Special Issue Application of Remote Sensing in Coastline Monitoring)
Show Figures

Figure 1

16 pages, 5125 KiB  
Article
Regional Sea Level Changes in the East China Sea from 1993 to 2020 Based on Satellite Altimetry
by Lujie Xiong, Fengwei Wang and Yanping Jiao
J. Mar. Sci. Eng. 2024, 12(9), 1552; https://doi.org/10.3390/jmse12091552 - 5 Sep 2024
Viewed by 476
Abstract
A comprehensive analysis was carried out to investigate the driving factors and influencing mechanisms of spatiotemporal variation of sea level at multiple scales in the East China Sea (ECS) via satellite altimetry datasets from 1993 to 2020. Based on the altimetry grid data [...] Read more.
A comprehensive analysis was carried out to investigate the driving factors and influencing mechanisms of spatiotemporal variation of sea level at multiple scales in the East China Sea (ECS) via satellite altimetry datasets from 1993 to 2020. Based on the altimetry grid data processed by the local mean decomposition method, the spatiotemporal changes of ECS sea level are analyzed from the multi-scale perspective in terms of multi-year, seasonal, interannual, and multi-modal scales. The results revealed that the ECS regional mean sea level change rate is 3.41 ± 0.58 mm/year over the 28-year period. On the seasonal scale, the regional mean sea level change rates are 3.45 ± 0.66 mm/year, 3.35 ± 0.60 mm/year, 3.39 ± 0.71 mm/year, and 3.57 ± 0.75 mm/year, for the four seasons (i.e., spring, summer, autumn, and winter) respectively. The spatial distribution analysis showed that ECS sea level changes are most pronounced in coastal areas. The northeast sea area of Taiwan and the edge of the East China Sea shelf are important areas of mesoscale eddy activity, which have an important impact on regional sea level change. The ECS seasonal sea level change is mainly affected by monsoons, precipitation, and temperature changes. The spatial distribution analysis indicated that the impact factors, including seawater thermal expansion, monsoons, ENSO, and the Kuroshio Current, dominated the ECS seasonal sea level change. Additionally, the ENSO and Kuroshio Current collectively affect the spatial distribution characteristics. Additionally, the empirical orthogonal function was employed to analyze the three modes of ECS regional sea level change, with the first three modes contributing 26.37%, 12.32%, and 10.47%, respectively. Spatially, the first mode mainly corresponds to ENSO index, whereas the second and third modes are linked to seasonal factors, and exhibit antiphase effects. The analyzed correlations between the ECS sea level change and southern oscillation index (SOI), revealed the consistent spatial characteristics between the regions affected by ENSO and those by the Kuroshio Current. Full article
(This article belongs to the Special Issue Remote Sensing Applications in Marine Environmental Monitoring)
Show Figures

Figure 1

18 pages, 5626 KiB  
Article
Improving GNSS-IR Sea Surface Height Accuracy Based on a New Ionospheric Stratified Elevation Angle Correction Model
by Jiadi Zhu, Wei Zheng, Yifan Shen, Keke Xu and Hebing Zhang
Remote Sens. 2024, 16(17), 3270; https://doi.org/10.3390/rs16173270 - 3 Sep 2024
Viewed by 465
Abstract
Approximately 71% of the Earth’s surface is covered by vast oceans. With the exacerbation of global climate change, high-precision monitoring of sea surface height variations is of vital importance for constructing global ocean gravity fields and preventing natural disasters in the marine system. [...] Read more.
Approximately 71% of the Earth’s surface is covered by vast oceans. With the exacerbation of global climate change, high-precision monitoring of sea surface height variations is of vital importance for constructing global ocean gravity fields and preventing natural disasters in the marine system. Global Navigation Satellite System Interferometry Reflectometry (GNSS-IR) sea surface altimetry is a method of inferring sea surface height based on the signal-to-noise ratio of satellite signals. It enables the retrieval of sea surface height variations with high precision. However, navigation satellite signals are influenced by the ionosphere during propagation, leading to deviations in the measured values of satellite elevation angles from their true values, which significantly affects the accuracy of GNSS-IR sea surface altimetry. Based on this, the contents of this paper are as follows: Firstly, a new ionospheric stratified elevation angle correction model (ISEACM) was developed by integrating the International Reference Ionosphere Model (IRI) and ray tracing methods. This model aims to improve the accuracy of GNSS-IR sea surface altimetry by correcting the ionospheric refraction effects on satellite elevation angles. Secondly, four GNSS stations (TAR0, PTLD, GOM1, and TPW2) were selected globally, and the corrected sea surface height values obtained using ISEACM were compared with observed values from tide gauge stations. The calculated average Root Mean Square Error (RMSE) and Pearson Correlation Coefficient (PCC) were 0.20 m and 0.83, respectively, indicating the effectiveness of ISEACM in sea surface height retrieval. Thirdly, a comparative analysis was conducted between sea surface height retrieval before and after correction using ISEACM. The optimal RMSE and PCC values with tide gauge station observations were 0.15 m and 0.90, respectively, representing a 20.00% improvement in RMSE and a 4.00% improvement in correlation coefficient compared to traditional GNSS-IR retrieval heights. These experimental results demonstrate that correction with ISEACM can effectively enhance the precision of GNSS-IR sea surface altimetry, which is crucial for accurate sea surface height measurements. Full article
(This article belongs to the Special Issue SoOP-Reflectometry or GNSS-Reflectometry: Theory and Applications)
Show Figures

Figure 1

21 pages, 8404 KiB  
Article
Improved Bathymetry Estimation Using Satellite Altimetry-Derived Gravity Anomalies and Machine Learning in the East Sea
by Kwang Bae Kim, Jisung Kim and Hong Sik Yun
J. Mar. Sci. Eng. 2024, 12(9), 1520; https://doi.org/10.3390/jmse12091520 - 2 Sep 2024
Viewed by 555
Abstract
This study aims to improve the accuracy of bathymetry predicted by gravity-geologic method (GGM) using the optimal machine learning model selected from machine learning techniques. In this study, several machine learning techniques were utilized to determine the optimal model from the performance of [...] Read more.
This study aims to improve the accuracy of bathymetry predicted by gravity-geologic method (GGM) using the optimal machine learning model selected from machine learning techniques. In this study, several machine learning techniques were utilized to determine the optimal model from the performance of depth and gravity anomalies. In addition, a tuning density contrast calculated from satellite altimetry-derived free-air gravity anomalies (FAGAs) was applied to estimate enhanced bathymetry. By comparison with shipborne depth, the accuracy of the bathymetry estimated by using satellite altimetry-derived FAGAs and machine learning was evaluated. The findings reveal that the bathymetry predicted by the optimal machine learning using the Gaussian process regression and the GGM with a tuning density contrast can enhance the accuracy of 82.64 m, showing an improvement of 67.40% in the RMSE at shipborne depth measurements. Although the tuning density is larger than 1.67 g/cm3, bathymetry using satellite altimetry-derived FAGAs and machine learning can be effectively improved with higher accuracy. Full article
Show Figures

Figure 1

Back to TopTop