skip to main content
10.1145/2903150.2906827acmconferencesArticle/Chapter ViewAbstractPublication PagescfConference Proceedingsconference-collections
research-article

A heterogeneous quantum computer architecture

Published: 16 May 2016 Publication History

Abstract

In this paper, we present a high level view of the heterogeneous quantum computer architecture as any future quantum computer will consist of both a classical and quantum computing part. The classical part is needed for error correction as well as for the execution of algorithms that contain both classical and quantum logic. We present a complete system stack describing the different layers when building a quantum computer. We also present the control logic and corresponding data path that needs to be implemented when executing quantum instructions and conclude by discussing design choices in the quantum plane.

References

[1]
T. A. Baart et al. Single-spin ccd. Nature nanotechnology, 2016.
[2]
S. Beauregard. Circuit for shor's algorithm using 2n+ 3 qubits. arXiv preprint quant-ph/0205095, 2002.
[3]
H. Bombin and M. Martin-Delgado. Topological computation without braiding. Phys. Rev. Lett., 98(16):160502, 2007.
[4]
H. Bombin and M. A. Martin-Delgado. Topological quantum distillation. Phys. Rev. Lett., 97(18):180501, 2006.
[5]
S. Bravyi, G. Duclos-Cianci, D. Poulin, and M. Suchara. Subsystem surface codes with three-qubit check operators. arXiv:1207.1443, 2012.
[6]
C. Bultink et al. In preparation, 2016.
[7]
A. R. Calderbank and P. W. Shor. Good quantum error-correcting codes exist. Phys. Rev. A, 54(2):1098, 1996.
[8]
A. C�rcoles et al. Demonstration of a quantum error detection code using a square lattice of four super-conducting qubits. Nature Comm., 6, 2015.
[9]
D. Deutsch. Quantum theory, the church-turing principle and the universal quantum computer. In Proc. of the Royal Society of London A: Math., Physical and Engineering Sciences, 1985.
[10]
D. P. DiVincenzo. Fault-tolerant architectures for superconducting qubits. Physica Scripta, 2009(T137):014020, 2009.
[11]
R. P. Feynman. Simulating physics with computers. Intern. J. of Theoretical physics, 21(6):467--488, 1982.
[12]
Fowler et al. Surface codes: Towards practical large-scale quantum computation. Phys. Rev. A, 86(3):032324, 2012.
[13]
Fowler et al. Towards practical classical processing for the surface code: Timing analysis. Phys. Rev. A, 86(4):042313, 2012.
[14]
D. Gottesman. Class of quantum error-correcting codes saturating the quantum hamming bound. Phys. Rev. A, 54(3):1862, 1996.
[15]
A. S. Green et al. An introduction to quantum programming in quipper. In Reversible Computation, pages 110--124. Springer, 2013.
[16]
J. Heckey et al. Compiler management of communication and parallelism for quantum computation. In Proc. of the 20th Int. Conf. on Architectural Support for Prog. Languages and Oper. Systems, pages 445--456. ACM, 2015.
[17]
C. D. Hill et al. A surface code quantum computer in silicon. Science advances, 1(9):e1500707, 2015.
[18]
Horsman et al. Surface code quantum computing by lattice surgery. New Journal of Physics, 14(12):123011, 2012.
[19]
A. JavadiAbhari et al. Scaffcc: A framework for compilation and analysis of quantum computing programs. In Proc. of the 11th ACM Conference on Computing Frontiers, page 1. ACM, 2014.
[20]
N. C. Jones et al. Layered architecture for quantum computing. Phys. Rev. X, 2(3):031007, 2012.
[21]
J. Kelly et al. State preservation by repetitive error detection in a superconducting quantum circuit. Nature, 519(7541):66--69, 2015.
[22]
A. Y. Kitaev. Fault-tolerant quantum computation by anyons. Annals of Physics, 303(1):2--30, 2003.
[23]
E. Knill. Quantum computing with realistically noisy devices. Nature, 434(7029):39--44, 03 2005.
[24]
M. Mariantoni et al. Implementing the quantum von neumann architecture with superconducting circuits. Science, 334(6052):61--65, 2011.
[25]
Meter and other. Arithmetic on a distributed-memory quantum multicomputer. ACM J. on Emerging Technologies in Computing Systems, 3(4):2, 2008.
[26]
T. Monz et al. 14-qubit entanglement: Creation and coherence. Phys. Rev. Lett., 106(13):130506--, 03 2011.
[27]
M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cambridge university press, 2010.
[28]
B. Omer. Structured quantum programming. Information Systems, page 130, 2003.
[29]
M. Oskin, F. T. Chong, and I. L. Chuang. A practical architecture for reliable quantum computers. Computer, 35(1):79--87, 2002.
[30]
W. otherss. A fault tolerant, area efficient architecture for shor's factoring algorithm. ACM SIGARCH Computer Architecture News, 37(3):383--394, 2009.
[31]
A. Paler, I. Polian, K. Nemoto, and S. J. Devitt. A compiler for fault-tolerant high level quantum circuits. arXiv:1509.02004, 2015.
[32]
D. Riste, S. Poletto, M. Z. Huang, et al. Detecting bit-flip errors in a logical qubit using stabilizer measurements. Nat Commun, 6, 04 2015.
[33]
J. W. Sanders and P. Zuliani. Quantum programming. In Mathematics of Program Construction, pages 80--99. Springer, 2000.
[34]
P. W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In Foundations of Computer Science, 1994, 35th Annual Symp. on, pages 124--134. IEEE, 1994.
[35]
P. W. Shor. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A, 52(4):R2493, 1995.
[36]
A. Steane. Multiple-particle interference and quantum error correction. In Proceedings of the Royal Society of London A: Math., Phys. and Eng. Sciences, 1996.
[37]
J. Stephen. Quantum algorithm zoo. list available at http://math.nist.gov/quantum/zoo, 2011.
[38]
Measuring and manipulating individual quantum systems, 2012.
[39]
R. Van Meter and C. Horsman. A blueprint for building a quantum computer. Comm. of the ACM, 56(10):84--93, 2013.
[40]
D. Wecker, M. B. Hastings, and M. Troyer. Towards practical quantum variational algorithms. arXiv preprint arXiv:1507.08969, 2015.
[41]
D. Wecker and K. Svore. Liqui|>: A software design architecture and domain-specific language for quantum computing. arXiv preprint arXiv:1402.4467, 2014.
[42]
X.-C. Yao et al. Experimental demonstration of topological error correction. Nature, 482(7386):489--494, 02 2012.

Cited By

View all
  • (2024)FLEXIBILIDADE EM SISTEMAS ELETR�NICOS: IMPLEMENTA��O DIN�MICA DE FUNCIONALIDADES EM DISPOSITIVOS DE ELETR�NICA PROGRAM�VELFLEXIBILITY IN ELECTRONICS SYSTEMS: DYNAMIC IMPLEMENTATION OF FUNCTIONALITIES IN PROGRAMMABLE ELECTRONICS DEVICESFLEXIBILIDAD EN SISTEMAS ELECTR�NICOS: IMPLEMENTACI�N DIN�MICA DE FUNCIONALIDADES EN DISPOSITIVOS ELECTR�NICOS PROGRAMABLESFLEXIBILIDADE EM SISTEMAS ELETR�NICOS: IMPLEMENTA��O DIN�MICA DE FUNCIONALIDADES EM DISPOSITIVOS DE ELETR�NICA PROGRAM�VELRECIMA21 - Revista Cient�fica Multidisciplinar - ISSN 2675-621810.47820/recima21.v5i8.56435:8(e585643)Online publication date: 27-Aug-2024
  • (2024)Deep Cryogenic Temperature CMOS Circuit and System Design for Quantum Computing ApplicationsEAI Endorsed Transactions on Energy Web10.4108/ew.499711Online publication date: 1-Feb-2024
  • (2023)HetArch: Heterogeneous Microarchitectures for Superconducting Quantum SystemsProceedings of the 56th Annual IEEE/ACM International Symposium on Microarchitecture10.1145/3613424.3614300(539-554)Online publication date: 28-Oct-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
CF '16: Proceedings of the ACM International Conference on Computing Frontiers
May 2016
487 pages
ISBN:9781450341288
DOI:10.1145/2903150
  • General Chairs:
  • Gianluca Palermo,
  • John Feo,
  • Program Chairs:
  • Antonino Tumeo,
  • Hubertus Franke
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 16 May 2016

Permissions

Request permissions for this article.

Check for updates

Author Tag

  1. quantum computer (micro-)architecture

Qualifiers

  • Research-article

Conference

CF'16
Sponsor:
CF'16: Computing Frontiers Conference
May 16 - 19, 2016
Como, Italy

Acceptance Rates

CF '16 Paper Acceptance Rate 30 of 94 submissions, 32%;
Overall Acceptance Rate 273 of 785 submissions, 35%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)179
  • Downloads (Last 6 weeks)19
Reflects downloads up to 16 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2024)FLEXIBILIDADE EM SISTEMAS ELETR�NICOS: IMPLEMENTA��O DIN�MICA DE FUNCIONALIDADES EM DISPOSITIVOS DE ELETR�NICA PROGRAM�VELFLEXIBILITY IN ELECTRONICS SYSTEMS: DYNAMIC IMPLEMENTATION OF FUNCTIONALITIES IN PROGRAMMABLE ELECTRONICS DEVICESFLEXIBILIDAD EN SISTEMAS ELECTR�NICOS: IMPLEMENTACI�N DIN�MICA DE FUNCIONALIDADES EN DISPOSITIVOS ELECTR�NICOS PROGRAMABLESFLEXIBILIDADE EM SISTEMAS ELETR�NICOS: IMPLEMENTA��O DIN�MICA DE FUNCIONALIDADES EM DISPOSITIVOS DE ELETR�NICA PROGRAM�VELRECIMA21 - Revista Cient�fica Multidisciplinar - ISSN 2675-621810.47820/recima21.v5i8.56435:8(e585643)Online publication date: 27-Aug-2024
  • (2024)Deep Cryogenic Temperature CMOS Circuit and System Design for Quantum Computing ApplicationsEAI Endorsed Transactions on Energy Web10.4108/ew.499711Online publication date: 1-Feb-2024
  • (2023)HetArch: Heterogeneous Microarchitectures for Superconducting Quantum SystemsProceedings of the 56th Annual IEEE/ACM International Symposium on Microarchitecture10.1145/3613424.3614300(539-554)Online publication date: 28-Oct-2023
  • (2023)Towards the Munich Quantum Software Stack: Enabling Efficient Access and Tool Support for Quantum Computers2023 IEEE International Conference on Quantum Computing and Engineering (QCE)10.1109/QCE57702.2023.10301(399-400)Online publication date: 17-Sep-2023
  • (2023)The Electronic Control System of a Trapped-Ion Quantum Processor: A Systematic Literature ReviewIEEE Access10.1109/ACCESS.2023.328993611(65775-65786)Online publication date: 2023
  • (2023)Quantum routing in planar graph using perfect state transferQuantum Information Processing10.1007/s11128-023-04120-z22:10Online publication date: 18-Oct-2023
  • (2022)XQsimProceedings of the 49th Annual International Symposium on Computer Architecture10.1145/3470496.3527417(366-382)Online publication date: 18-Jun-2022
  • (2022)COMPAQT: Compressed Waveform Memory Architecture for Scalable Qubit ControlProceedings of the 55th Annual IEEE/ACM International Symposium on Microarchitecture10.1109/MICRO56248.2022.00076(1059-1077)Online publication date: 1-Oct-2022
  • (2022)Performance Analysis of the IBM Cloud Quantum Computing Lab Against MacBook Pro 2019Intelligent Human Computer Interaction10.1007/978-3-030-98404-5_42(449-459)Online publication date: 20-Mar-2022
  • (2021)Modular Multiplier for Digital Quantum Coprocessor2021 IEEE 3rd Ukraine Conference on Electrical and Computer Engineering (UKRCON)10.1109/UKRCON53503.2021.9575843(557-560)Online publication date: 26-Aug-2021
  • Show More Cited By

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media